BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 33480272)

  • 21. Self-Assembly of Phenylalanine-Leucine, Leucine-Phenylalanine, and Cyclo(-leucine-phenylalanine) Dipeptides through Simulations and Experiments.
    Divanach P; Fanouraki E; Mitraki A; Harmandaris V; Rissanou AN
    J Phys Chem B; 2023 May; 127(19):4208-4219. PubMed ID: 37148280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of self-assembled nanostructures for intracellular drug delivery from diphenylalanine analogues with rigid or flexible chemical linkers.
    Arul A; Rana P; Das K; Pan I; Mandal D; Stewart A; Maity B; Ghosh S; Das P
    Nanoscale Adv; 2021 Oct; 3(21):6176-6190. PubMed ID: 36133937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels.
    Wang Y; Zhang W; Gong C; Liu B; Li Y; Wang L; Su Z; Wei G
    Soft Matter; 2020 Nov; 16(44):10029-10045. PubMed ID: 32696801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of pH on the self-assembly of diphenylalanine peptides: molecular insights from coarse-grained simulations.
    Wang Y; Wang K; Zhao X; Xu X; Sun T
    Soft Matter; 2023 Aug; 19(30):5749-5757. PubMed ID: 37462931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Assembling Peptides: From Design to Biomedical Applications.
    La Manna S; Di Natale C; Onesto V; Marasco D
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dipeptide self-assembly into water-channels and gel biomaterial.
    Bellotto O; Pierri G; Rozhin P; Polentarutti M; Kralj S; D'Andrea P; Tedesco C; Marchesan S
    Org Biomol Chem; 2022 Aug; 20(31):6211-6218. PubMed ID: 35575102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silver-incorporating peptide and protein supramolecular nanomaterials for biomedical applications.
    Abbas M; Atiq A; Xing R; Yan X
    J Mater Chem B; 2021 Jun; 9(22):4444-4458. PubMed ID: 33978051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications.
    Reches M; Gazit E
    Phys Biol; 2006 Feb; 3(1):S10-9. PubMed ID: 16582461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface-induced self-assembly of dipeptides onto nanotextured surfaces.
    Demirel G; Buyukserin F
    Langmuir; 2011 Oct; 27(20):12533-8. PubMed ID: 21879773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-assembled dipeptide-based nanostructures: tiny tots with great applications.
    Panda JJ; Mishra J
    Ther Deliv; 2016; 7(2):59-62. PubMed ID: 26768726
    [No Abstract]   [Full Text] [Related]  

  • 31. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization.
    Gazit E
    Chem Soc Rev; 2007 Aug; 36(8):1263-9. PubMed ID: 17619686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembling peptide-based building blocks in medical applications.
    Acar H; Srivastava S; Chung EJ; Schnorenberg MR; Barrett JC; LaBelle JL; Tirrell M
    Adv Drug Deliv Rev; 2017 Feb; 110-111():65-79. PubMed ID: 27535485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in functional supramolecular nanostructures assembled from bioactive building blocks.
    Lim YB; Moon KS; Lee M
    Chem Soc Rev; 2009 Apr; 38(4):925-34. PubMed ID: 19421572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and Investigation of Backbone Modified Squaramide Dipeptide Self-Assembly.
    Shinde SD; Kulkarni N; Sahu B
    ACS Appl Bio Mater; 2023 Feb; 6(2):507-518. PubMed ID: 36716238
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecularly Stimuli-Responsive Self-Assembled Peptide Nanoparticles for Targeted Imaging and Therapy.
    Zhou Y; Li Q; Wu Y; Li X; Zhou Y; Wang Z; Liang H; Ding F; Hong S; Steinmetz NF; Cai H
    ACS Nano; 2023 May; 17(9):8004-8025. PubMed ID: 37079378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials.
    Mendes AC; Baran ET; Reis RL; Azevedo HS
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(6):582-612. PubMed ID: 23929805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Progress on Cyclic Peptides' Assembly and Biomedical Applications.
    Wu C; Wang H
    Chembiochem; 2023 Jul; 24(14):e202300018. PubMed ID: 37017003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-assembly of t-butyloxycarbonyl protected dipeptide methyl esters composed of leucine, isoleucine, and valine into highly organized structures from alcohol and aqueous alcohol mixtures.
    Subbalakshmi C; Basak P; Nagaraj R
    Biopolymers; 2017 Nov; 108(6):. PubMed ID: 28589640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembled dipeptide nanotubes constituted by flexible β-phenylalanine and conformationally constrained α,β-dehydrophenylalanine residues as drug delivery system.
    Parween S; Misra A; Ramakumar S; Chauhan VS
    J Mater Chem B; 2014 May; 2(20):3096-3106. PubMed ID: 32261685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polymeric nanostructures based on azobenzene and their biomedical applications: synthesis, self-assembly and stimuli-responsiveness.
    Zheng M; Yuan J
    Org Biomol Chem; 2022 Jan; 20(4):749-767. PubMed ID: 34908082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.