BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33480693)

  • 21. Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale.
    Picas L; Milhiet PE; Hernández-Borrell J
    Chem Phys Lipids; 2012 Dec; 165(8):845-60. PubMed ID: 23194897
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic Defects Induced by Melittin in Model Lipid Membranes: A Solution Atomic Force Microscopy Study.
    Pan J; Khadka NK
    J Phys Chem B; 2016 May; 120(20):4625-34. PubMed ID: 27167473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability of Biological Membranes upon Mechanical Indentation.
    Franz F; Aponte-Santamaría C; Daday C; Miletić V; Gräter F
    J Phys Chem B; 2018 Jul; 122(28):7073-7079. PubMed ID: 29897246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells.
    Regmi R; Winkler PM; Flauraud V; Borgman KJE; Manzo C; Brugger J; Rigneault H; Wenger J; García-Parajo MF
    Nano Lett; 2017 Oct; 17(10):6295-6302. PubMed ID: 28926278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unraveling complex nanoscale lipid dynamics in simple model biomembranes: Insights from fluorescence correlation spectroscopy in super-resolution stimulated emission depletion mode.
    Sarangi NK; Roobala C; Basu JK
    Methods; 2018 May; 140-141():198-211. PubMed ID: 29175337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomic force microscopy of supported lipid bilayers.
    Mingeot-Leclercq MP; Deleu M; Brasseur R; Dufrêne YF
    Nat Protoc; 2008; 3(10):1654-9. PubMed ID: 18833202
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the Nanoscale Dynamics of Biological Membranes.
    Winkler PM; Regmi R; Flauraud V; Brugger J; Rigneault H; Wenger J; García-Parajo MF
    J Phys Chem Lett; 2018 Jan; 9(1):110-119. PubMed ID: 29240442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoscale structural and mechanical effects of beta-amyloid (1-42) on polymer cushioned membranes: a combined study by neutron reflectometry and AFM Force Spectroscopy.
    Dante S; Hauss T; Steitz R; Canale C; Dencher NA
    Biochim Biophys Acta; 2011 Nov; 1808(11):2646-55. PubMed ID: 21810407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silica xerogel/aerogel-supported lipid bilayers: consequences of surface corrugation.
    Goksu EI; Hoopes MI; Nellis BA; Xing C; Faller R; Frank CW; Risbud SH; Satcher JH; Longo ML
    Biochim Biophys Acta; 2010 Apr; 1798(4):719-29. PubMed ID: 19766590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomic force microscopy force mapping in the study of supported lipid bilayers.
    Li JK; Sullan RM; Zou S
    Langmuir; 2011 Feb; 27(4):1308-13. PubMed ID: 21090659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of lipid membrane structural and mechanical properties by a peptidomimetic derived from reduced amide scaffold.
    Khadka NK; Teng P; Cai J; Pan J
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):734-744. PubMed ID: 28132901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Broadband Plasmonic Nanoantennas for Multi-Color Nanoscale Dynamics in Living Cells.
    Sanz-Paz M; van Zanten TS; Manzo C; Mivelle M; Garcia-Parajo MF
    Small; 2023 Jul; 19(28):e2207977. PubMed ID: 36999791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time atomic force microscopy reveals cytochrome c-induced alterations in neutral lipid bilayers.
    Morandat S; El Kirat K
    Langmuir; 2007 Oct; 23(22):10929-32. PubMed ID: 17887784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combining colloidal probe atomic force and reflection interference contrast microscopy to study the compressive mechanics of hyaluronan brushes.
    Attili S; Richter RP
    Langmuir; 2012 Feb; 28(6):3206-16. PubMed ID: 22216832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation and dynamics of supported phospholipid membranes on a periodic nanotextured substrate.
    Werner JH; Montaño GA; Garcia AL; Zurek NA; Akhadov EA; Lopez GP; Shreve AP
    Langmuir; 2009 Mar; 25(5):2986-93. PubMed ID: 19437708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoscale imaging of domains in supported lipid membranes.
    Johnston LJ
    Langmuir; 2007 May; 23(11):5886-95. PubMed ID: 17428076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time influence on the interaction between Cyt2Aa2 and lipid/cholesterol bilayers.
    Moreno-Cencerrado A; Tharad S; Iturri J; Promdonkoy B; Krittanai C; Toca-Herrera JL
    Microsc Res Tech; 2016 Nov; 79(11):1017-1023. PubMed ID: 27474495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanodomain Formation in Planar Supported Lipid Bilayers Composed of Fluid and Polymerized Dienoyl Lipids.
    Fonseka NM; Liang B; Orosz KS; Jones IW; Hall HK; Christie HS; Aspinwall CA; Saavedra SS
    Langmuir; 2019 Sep; 35(38):12483-12491. PubMed ID: 31454251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring the effect of cholesterol in lipid bilayer membrane on the melittin penetration mechanism.
    Chen LY; Cheng CW; Lin JJ; Chen WY
    Anal Biochem; 2007 Aug; 367(1):49-55. PubMed ID: 17570332
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unraveling lipid/protein interaction in model lipid bilayers by Atomic Force Microscopy.
    Alessandrini A; Facci P
    J Mol Recognit; 2011; 24(3):387-96. PubMed ID: 21504015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.