These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Brownian Dynamics, Molecular Dynamics, and Monte Carlo modeling of colloidal systems. Chen JC; Kim AS Adv Colloid Interface Sci; 2004 Dec; 112(1-3):159-73. PubMed ID: 15581559 [TBL] [Abstract][Full Text] [Related]
8. Coarse-grained Monte Carlo simulations of non-equilibrium systems. Liu X; Crocker JC; Sinno T J Chem Phys; 2013 Jun; 138(24):244111. PubMed ID: 23822231 [TBL] [Abstract][Full Text] [Related]
9. "Dense diffusion" in colloidal glasses: short-ranged long-time self-diffusion as a mechanistic model for relaxation dynamics. Wang JG; Li Q; Peng X; McKenna GB; Zia RN Soft Matter; 2020 Aug; 16(31):7370-7389. PubMed ID: 32696798 [TBL] [Abstract][Full Text] [Related]
10. Many-particle Brownian and Langevin Dynamics Simulations with the Brownmove package. Geyer T BMC Biophys; 2011 Apr; 4():7. PubMed ID: 21596002 [TBL] [Abstract][Full Text] [Related]
11. Micellization Studied by GPU-Accelerated Coarse-Grained Molecular Dynamics. Levine BG; LeBard DN; DeVane R; Shinoda W; Kohlmeyer A; Klein ML J Chem Theory Comput; 2011 Dec; 7(12):4135-45. PubMed ID: 26598358 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of sedimenting active Brownian particles. Vachier J; Mazza MG Eur Phys J E Soft Matter; 2019 Jan; 42(1):11. PubMed ID: 30687883 [TBL] [Abstract][Full Text] [Related]
13. Three-Dimensional Brownian Dynamics Simulator for the Study of Ion Permeation through Membrane Pores. Berti C; Furini S; Gillespie D; Boda D; Eisenberg RS; Sangiorgi E; Fiegna C J Chem Theory Comput; 2014 Aug; 10(8):2911-26. PubMed ID: 26588267 [TBL] [Abstract][Full Text] [Related]
14. Accelerating flat-histogram methods for potential of mean force calculations. Janosi L; Doxastakis M J Chem Phys; 2009 Aug; 131(5):054105. PubMed ID: 19673549 [TBL] [Abstract][Full Text] [Related]
16. Brownian dynamics of fully confined suspensions of rigid particles without Green's functions. Sprinkle B; Donev A; Bhalla APS; Patankar N J Chem Phys; 2019 Apr; 150(16):164116. PubMed ID: 31042913 [TBL] [Abstract][Full Text] [Related]
17. Wavelet Monte Carlo dynamics: A new algorithm for simulating the hydrodynamics of interacting Brownian particles. Dyer OT; Ball RC J Chem Phys; 2017 Mar; 146(12):124111. PubMed ID: 28388112 [TBL] [Abstract][Full Text] [Related]
18. Inertial effects of self-propelled particles: From active Brownian to active Langevin motion. Löwen H J Chem Phys; 2020 Jan; 152(4):040901. PubMed ID: 32007042 [TBL] [Abstract][Full Text] [Related]
19. Improved configuration space sampling: Langevin dynamics with alternative mobility. Chau CD; Sevink GJ; Fraaije JG J Chem Phys; 2008 Jun; 128(24):244110. PubMed ID: 18601320 [TBL] [Abstract][Full Text] [Related]
20. Applicability of effective pair potentials for active Brownian particles. Rein M; Speck T Eur Phys J E Soft Matter; 2016 Sep; 39(9):84. PubMed ID: 27628695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]