These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33480951)

  • 1. An expanding bacterial colony forms a depletion zone with growing droplets.
    Ma H; Bell J; Chen W; Mani S; Tang JX
    Soft Matter; 2021 Mar; 17(8):2315-2326. PubMed ID: 33480951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary flow and mechanical buckling in a growing annular bacterial colony.
    Si T; Ma Z; Tang JX
    Soft Matter; 2018 Jan; 14(2):301-311. PubMed ID: 29260829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corner Flows Induced by Surfactant-Producing Bacteria Bacillus subtilis and Pseudomonas fluorescens.
    Li Y; Sanfilippo JE; Kearns D; Yang JQ
    Microbiol Spectr; 2022 Oct; 10(5):e0323322. PubMed ID: 36214703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-range alteration of the physical environment mediates cooperation between Pseudomonas aeruginosa swarming colonies.
    Deforet M
    Environ Microbiol; 2023 Aug; 25(8):1451-1464. PubMed ID: 36964975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Physical Effects on the Swarming Motility of Pseudomonas aeruginosa.
    Yang A; Tang WS; Si T; Tang JX
    Biophys J; 2017 Apr; 112(7):1462-1471. PubMed ID: 28402888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system.
    Sempels W; De Dier R; Mizuno H; Hofkens J; Vermant J
    Nat Commun; 2013; 4():1757. PubMed ID: 23612298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of rhamnolipids on initial attachment of bacteria on glass and octadecyltrichlorosilane-modified glass.
    Sodagari M; Wang H; Newby BM; Ju LK
    Colloids Surf B Biointerfaces; 2013 Mar; 103():121-8. PubMed ID: 23201728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Alternative Gelling Agents Reveals the Role of Rhamnolipids in
    Morin CD; Déziel E
    Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680106
    [No Abstract]   [Full Text] [Related]  

  • 9. Pseudomonas aeruginosa biofilm disruption using microbial surfactants.
    Díaz De Rienzo MA; Stevenson PS; Marchant R; Banat IM
    J Appl Microbiol; 2016 Apr; 120(4):868-76. PubMed ID: 26742560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa.
    Zhao F; Shi R; Ma F; Han S; Zhang Y
    Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel.
    Diaz De Rienzo MA; Stevenson PS; Marchant R; Banat IM
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5773-9. PubMed ID: 26825819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications.
    Maier RM; Soberón-Chávez G
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):625-33. PubMed ID: 11131386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depletion zone in two-dimensional deposits of soft microgel particles.
    Jose M; Singh R; Satapathy DK
    J Colloid Interface Sci; 2023 Jul; 642():364-372. PubMed ID: 37018961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhamnolipid-dependent spreading growth of Pseudomonas aeruginosa on a high-agar medium: marked enhancement under CO2-rich anaerobic conditions.
    Nozawa T; Tanikawa T; Hasegawa H; Takahashi C; Ando Y; Matsushita M; Nakagawa Y; Matsuyama T
    Microbiol Immunol; 2007; 51(8):703-12. PubMed ID: 17704632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of bactericidal material generated by electrical devices advertising bactericidal ability against bacteria on the agar gel plates].
    Nishimura H
    Kansenshogaku Zasshi; 2012 Nov; 86(6):723-33. PubMed ID: 23367847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase in bacterial biosurfactant production by co-cultivation with biofilm-forming bacteria.
    Alves AR; Sequeira AM; Cunha Â
    Lett Appl Microbiol; 2019 Jul; 69(1):79-86. PubMed ID: 31077423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures.
    Hošková M; Ježdík R; Schreiberová O; Chudoba J; Šír M; Čejková A; Masák J; Jirků V; Řezanka T
    J Biotechnol; 2015 Jan; 193():45-51. PubMed ID: 25433178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The involvement of rhamnolipids in microbial cell adhesion and biofilm development - an approach for control?
    Nickzad A; Déziel E
    Lett Appl Microbiol; 2014 May; 58(5):447-53. PubMed ID: 24372465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioavailability of solid and non-aqueous phase liquid (NAPL)-dissolved phenanthrene to the biosurfactant-producing bacterium Pseudomonas aeruginosa 19SJ.
    García-Junco M; De Olmedo E; Ortega-Calvo JJ
    Environ Microbiol; 2001 Sep; 3(9):561-9. PubMed ID: 11683866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of Pseudomonas aeruginosa inhibition zone during tobramycin disk diffusion is due to transition from planktonic to biofilm mode of growth.
    Høiby N; Henneberg KÅ; Wang H; Stavnsbjerg C; Bjarnsholt T; Ciofu O; Johansen UR; Sams T
    Int J Antimicrob Agents; 2019 May; 53(5):564-573. PubMed ID: 30615928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.