These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

656 related articles for article (PubMed ID: 33481572)

  • 1. Transcriptomics Integrated with Free and Bound Terpenoid Aroma Profiling during "Shine Muscat" (
    Wang W; Feng J; Wei L; Khalil-Ur-Rehman M; Nieuwenhuizen NJ; Yang L; Zheng H; Tao J
    J Agric Food Chem; 2021 Feb; 69(4):1413-1429. PubMed ID: 33481572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terpene evolution during the development of Vitis vinifera L. cv. Shiraz grapes.
    Zhang P; Fuentes S; Siebert T; Krstic M; Herderich M; Barlow EWR; Howell K
    Food Chem; 2016 Aug; 204():463-474. PubMed ID: 26988525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions.
    Wen YQ; Zhong GY; Gao Y; Lan YB; Duan CQ; Pan QH
    BMC Plant Biol; 2015 Oct; 15():240. PubMed ID: 26444528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development.
    Deluc LG; Grimplet J; Wheatley MD; Tillett RL; Quilici DR; Osborne C; Schooley DA; Schlauch KA; Cushman JC; Cramer GR
    BMC Genomics; 2007 Nov; 8():429. PubMed ID: 18034876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Thidiazuron on Terpene Volatile Constituents and Terpenoid Biosynthesis Pathway Gene Expression of Shine Muscat (
    Wang W; Khalil-Ur-Rehman M; Wei LL; Nieuwenhuizen NJ; Zheng H; Tao JM
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32498235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-seq based transcriptomic analysis of CPPU treated grape berries and emission of volatile compounds.
    Wang W; Khalil-Ur-Rehman M; Feng J; Tao J
    J Plant Physiol; 2017 Nov; 218():155-166. PubMed ID: 28843071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free terpene evolution during the berry maturation of five Vitis vinifera L. cultivars.
    Luo J; Brotchie J; Pang M; Marriott PJ; Howell K; Zhang P
    Food Chem; 2019 Nov; 299():125101. PubMed ID: 31323442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and (-)-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries.
    Lücker J; Bowen P; Bohlmann J
    Phytochemistry; 2004 Oct; 65(19):2649-59. PubMed ID: 15464152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression.
    Sweetman C; Wong DC; Ford CM; Drew DP
    BMC Genomics; 2012 Dec; 13():691. PubMed ID: 23227855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors.
    Nieuwenhuizen NJ; Chen X; Wang MY; Matich AJ; Perez RL; Allan AC; Green SA; Atkinson RG
    Plant Physiol; 2015 Apr; 167(4):1243-58. PubMed ID: 25649633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomics of the grape berry shrivel ripening disorder.
    Savoi S; Herrera JC; Forneck A; Griesser M
    Plant Mol Biol; 2019 Jun; 100(3):285-301. PubMed ID: 30941542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the Constitutive and Induced Biosynthesis of Mono- and Sesquiterpenes in Grapes (Vitis vinifera): A Key to Unlocking the Biochemical Secrets of Unique Grape Aroma Profiles.
    Schwab W; Wüst M
    J Agric Food Chem; 2015 Dec; 63(49):10591-603. PubMed ID: 26592256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol.
    May B; Lange BM; Wüst M
    Phytochemistry; 2013 Nov; 95():135-44. PubMed ID: 23954075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulated deficit irrigation strategies affect the terpene accumulation in Gewürztraminer (Vitis vinifera L.) grapes grown in the Okanagan Valley.
    Kovalenko Y; Tindjau R; Madilao LL; Castellarin SD
    Food Chem; 2021 Mar; 341(Pt 2):128172. PubMed ID: 33039736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.).
    Savoi S; Wong DC; Arapitsas P; Miculan M; Bucchetti B; Peterlunger E; Fait A; Mattivi F; Castellarin SD
    BMC Plant Biol; 2016 Mar; 16():67. PubMed ID: 27001212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sunlight exclusion from Muscat grape alters volatile profiles during berry development.
    Zhang H; Fan P; Liu C; Wu B; Li S; Liang Z
    Food Chem; 2014 Dec; 164():242-50. PubMed ID: 24996330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Editing VvDXS1 for the creation of muscat flavour in Vitis vinifera cv. Scarlet Royal.
    Yang Y; Wheatley M; Meakem V; Galarneau E; Gutierrez B; Zhong GY
    Plant Biotechnol J; 2024 Jun; 22(6):1610-1621. PubMed ID: 38243882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size.
    Wong DC; Lopez Gutierrez R; Dimopoulos N; Gambetta GA; Castellarin SD
    BMC Genomics; 2016 May; 17():416. PubMed ID: 27245662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple.
    Nieuwenhuizen NJ; Green SA; Chen X; Bailleul EJ; Matich AJ; Wang MY; Atkinson RG
    Plant Physiol; 2013 Feb; 161(2):787-804. PubMed ID: 23256150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening.
    Böttcher C; Burbidge CA; Boss PK; Davies C
    BMC Plant Biol; 2013 Dec; 13():222. PubMed ID: 24364881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.