These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33481654)

  • 1. Prediction of Virus-Receptor Interactions Based on Improving Similarities.
    Zhu L; Yan C; Duan G
    J Comput Biol; 2021 Jul; 28(7):650-659. PubMed ID: 33481654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IILLS: predicting virus-receptor interactions based on similarity and semi-supervised learning.
    Yan C; Duan G; Wu FX; Wang J
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):651. PubMed ID: 31881820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BRWMDA:Predicting Microbe-Disease Associations Based on Similarities and Bi-Random Walk on Disease and Microbe Networks.
    Yan C; Duan G; Wu FX; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1595-1604. PubMed ID: 30932846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting virus-host association by Kernelized logistic matrix factorization and similarity network fusion.
    Liu D; Ma Y; Jiang X; He T
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):594. PubMed ID: 31787095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MDAKRLS: Predicting human microbe-disease association based on Kronecker regularized least squares and similarities.
    Xu D; Xu H; Zhang Y; Wang M; Chen W; Gao R
    J Transl Med; 2021 Feb; 19(1):66. PubMed ID: 33579301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VDA-RWLRLS: An anti-SARS-CoV-2 drug prioritizing framework combining an unbalanced bi-random walk and Laplacian regularized least squares.
    Shen L; Liu F; Huang L; Liu G; Zhou L; Peng L
    Comput Biol Med; 2022 Jan; 140():105119. PubMed ID: 34902608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting miRNA-disease associations based on graph attention networks and dual Laplacian regularized least squares.
    Wang W; Chen H
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35849099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DDIGIP: predicting drug-drug interactions based on Gaussian interaction profile kernels.
    Yan C; Duan G; Pan Y; Wu FX; Wang J
    BMC Bioinformatics; 2019 Dec; 20(Suppl 15):538. PubMed ID: 31874609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FKL-Spa-LapRLS: an accurate method for identifying human microRNA-disease association.
    Jiang L; Xiao Y; Ding Y; Tang J; Guo F
    BMC Genomics; 2018 Dec; 19(Suppl 10):911. PubMed ID: 30598109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MCHMDA:Predicting Microbe-Disease Associations Based on Similarities and Low-Rank Matrix Completion.
    Yan C; Duan G; Wu FX; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):611-620. PubMed ID: 31295117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The computational prediction of drug-disease interactions using the dual-network L
    Cui Z; Gao YL; Liu JX; Wang J; Shang J; Dai LY
    BMC Bioinformatics; 2019 Jan; 20(1):5. PubMed ID: 30611214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNRLMF-MDA:Predicting microRNA-Disease Associations Based on Similarities of microRNAs and Diseases.
    Yan C; Wang J; Ni P; Lan W; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):233-243. PubMed ID: 29990253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel bi-directional heterogeneous network selection method for disease and microbial association prediction.
    Guan J; Zhang ZG; Liu Y; Wang M
    BMC Bioinformatics; 2022 Nov; 23(1):483. PubMed ID: 36376802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LRLSHMDA: Laplacian Regularized Least Squares for Human Microbe-Disease Association prediction.
    Wang F; Huang ZA; Chen X; Zhu Z; Wen Z; Zhao J; Yan GY
    Sci Rep; 2017 Aug; 7(1):7601. PubMed ID: 28790448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SNMFSMMA: using symmetric nonnegative matrix factorization and Kronecker regularized least squares to predict potential small molecule-microRNA association.
    Zhao Y; Chen X; Yin J; Qu J
    RNA Biol; 2020 Feb; 17(2):281-291. PubMed ID: 31739716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graph regularized L
    Gao Z; Wang YT; Wu QW; Ni JC; Zheng CH
    BMC Bioinformatics; 2020 Feb; 21(1):61. PubMed ID: 32070280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LPI-SKF: Predicting lncRNA-Protein Interactions Using Similarity Kernel Fusions.
    Zhou YK; Hu J; Shen ZA; Zhang WY; Du PF
    Front Genet; 2020; 11():615144. PubMed ID: 33362868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying potential association on gene-disease network via dual hypergraph regularized least squares.
    Yang H; Ding Y; Tang J; Guo F
    BMC Genomics; 2021 Aug; 22(1):605. PubMed ID: 34372777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach for predicting microbe-disease associations by bi-random walk on the heterogeneous network.
    Zou S; Zhang J; Zhang Z
    PLoS One; 2017; 12(9):e0184394. PubMed ID: 28880967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MiRNA-disease interaction prediction based on kernel neighborhood similarity and multi-network bidirectional propagation.
    Ma Y; He T; Ge L; Zhang C; Jiang X
    BMC Med Genomics; 2019 Dec; 12(Suppl 10):185. PubMed ID: 31865912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.