These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 33481716)
1. CEPZ: A Novel Predictor for Identification of DNase I Hypersensitive Sites. Zheng Y; Wang H; Ding Y; Guo F IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2768-2774. PubMed ID: 33481716 [TBL] [Abstract][Full Text] [Related]
2. Use Chou's 5-steps rule to identify DNase I hypersensitive sites via dinucleotide property matrix and extreme gradient boosting. Zhang S; Xue T Mol Genet Genomics; 2020 Nov; 295(6):1431-1442. PubMed ID: 32685987 [TBL] [Abstract][Full Text] [Related]
3. Identification of DNase I hypersensitive sites in the human genome by multiple sequence descriptors. Jin YT; Tan Y; Gan ZH; Hao YD; Wang TY; Lin H; Tang B Methods; 2024 Sep; 229():125-132. PubMed ID: 38964595 [TBL] [Abstract][Full Text] [Related]
4. pDHS-SVM: A prediction method for plant DNase I hypersensitive sites based on support vector machine. Zhang S; Zhou Z; Chen X; Hu Y; Yang L J Theor Biol; 2017 Aug; 426():126-133. PubMed ID: 28552554 [TBL] [Abstract][Full Text] [Related]
5. iDHS-DMCAC: identifying DNase I hypersensitive sites with balanced dinucleotide-based detrending moving-average cross-correlation coefficient. Liang Y; Zhang S SAR QSAR Environ Res; 2019 Jun; 30(6):429-445. PubMed ID: 31117818 [TBL] [Abstract][Full Text] [Related]
7. iDHS-FFLG: Identifying DNase I Hypersensitive Sites by Feature Fusion and Local-Global Feature Extraction Network. Wang LS; Sun ZL Interdiscip Sci; 2023 Jun; 15(2):155-170. PubMed ID: 36166165 [TBL] [Abstract][Full Text] [Related]
8. Prediction of DNase I hypersensitive sites in plant genome using multiple modes of pseudo components. Zhang S; Zhuang W; Xu Z Anal Biochem; 2018 May; 549():149-156. PubMed ID: 29604265 [TBL] [Abstract][Full Text] [Related]
9. Advances of DNase-seq for mapping active gene regulatory elements across the genome in animals. Chen A; Chen D; Chen Y Gene; 2018 Aug; 667():83-94. PubMed ID: 29772251 [TBL] [Abstract][Full Text] [Related]
10. iDHS-DASTS: identifying DNase I hypersensitive sites based on LASSO and stacking learning. Zhang S; Duan Z; Yang W; Qian C; You Y Mol Omics; 2021 Feb; 17(1):130-141. PubMed ID: 33295914 [TBL] [Abstract][Full Text] [Related]
11. iDHS-DT: Identifying DNase I hypersensitive sites by integrating DNA dinucleotide and trinucleotide information. Zou H; Yang F; Yin Z Biophys Chem; 2022 Feb; 281():106717. PubMed ID: 34798459 [TBL] [Abstract][Full Text] [Related]
12. DHSpred: support-vector-machine-based human DNase I hypersensitive sites prediction using the optimal features selected by random forest. Manavalan B; Shin TH; Lee G Oncotarget; 2018 Jan; 9(2):1944-1956. PubMed ID: 29416743 [TBL] [Abstract][Full Text] [Related]
13. The accessible chromatin landscape of the human genome. Thurman RE; Rynes E; Humbert R; Vierstra J; Maurano MT; Haugen E; Sheffield NC; Stergachis AB; Wang H; Vernot B; Garg K; John S; Sandstrom R; Bates D; Boatman L; Canfield TK; Diegel M; Dunn D; Ebersol AK; Frum T; Giste E; Johnson AK; Johnson EM; Kutyavin T; Lajoie B; Lee BK; Lee K; London D; Lotakis D; Neph S; Neri F; Nguyen ED; Qu H; Reynolds AP; Roach V; Safi A; Sanchez ME; Sanyal A; Shafer A; Simon JM; Song L; Vong S; Weaver M; Yan Y; Zhang Z; Zhang Z; Lenhard B; Tewari M; Dorschner MO; Hansen RS; Navas PA; Stamatoyannopoulos G; Iyer VR; Lieb JD; Sunyaev SR; Akey JM; Sabo PJ; Kaul R; Furey TS; Dekker J; Crawford GE; Stamatoyannopoulos JA Nature; 2012 Sep; 489(7414):75-82. PubMed ID: 22955617 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Jin W; Tang Q; Wan M; Cui K; Zhang Y; Ren G; Ni B; Sklar J; Przytycka TM; Childs R; Levens D; Zhao K Nature; 2015 Dec; 528(7580):142-6. PubMed ID: 26605532 [TBL] [Abstract][Full Text] [Related]
15. pDHS-ELM: computational predictor for plant DNase I hypersensitive sites based on extreme learning machines. Zhang S; Chang M; Zhou Z; Dai X; Xu Z Mol Genet Genomics; 2018 Aug; 293(4):1035-1049. PubMed ID: 29594496 [TBL] [Abstract][Full Text] [Related]
16. Identifying DNase I hypersensitive sites using multi-features fusion and F-score features selection via Chou's 5-steps rule. Liang Y; Zhang S Biophys Chem; 2019 Oct; 253():106227. PubMed ID: 31325710 [TBL] [Abstract][Full Text] [Related]
17. The 'dark matter' in the plant genomes: non-coding and unannotated DNA sequences associated with open chromatin. Jiang J Curr Opin Plant Biol; 2015 Apr; 24():17-23. PubMed ID: 25625239 [TBL] [Abstract][Full Text] [Related]
18. Genome-scale identification of Caenorhabditis elegans regulatory elements by tiling-array mapping of DNase I hypersensitive sites. Shi B; Guo X; Wu T; Sheng S; Wang J; Skogerbø G; Zhu X; Chen R BMC Genomics; 2009 Feb; 10():92. PubMed ID: 19243610 [TBL] [Abstract][Full Text] [Related]
19. iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Liu B; Long R; Chou KC Bioinformatics; 2016 Aug; 32(16):2411-8. PubMed ID: 27153623 [TBL] [Abstract][Full Text] [Related]
20. Causes and consequences of chromatin variation between inbred mice. Hosseini M; Goodstadt L; Hughes JR; Kowalczyk MS; de Gobbi M; Otto GW; Copley RR; Mott R; Higgs DR; Flint J PLoS Genet; 2013 Jun; 9(6):e1003570. PubMed ID: 23785304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]