These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 33481716)
21. Genome-Wide Identification of Regulatory Sequences Undergoing Accelerated Evolution in the Human Genome. Dong X; Wang X; Zhang F; Tian W Mol Biol Evol; 2016 Oct; 33(10):2565-75. PubMed ID: 27401230 [TBL] [Abstract][Full Text] [Related]
22. Deep learning for DNase I hypersensitive sites identification. Lyu C; Wang L; Zhang J BMC Genomics; 2018 Dec; 19(Suppl 10):905. PubMed ID: 30598079 [TBL] [Abstract][Full Text] [Related]
23. Index and biological spectrum of human DNase I hypersensitive sites. Meuleman W; Muratov A; Rynes E; Halow J; Lee K; Bates D; Diegel M; Dunn D; Neri F; Teodosiadis A; Reynolds A; Haugen E; Nelson J; Johnson A; Frerker M; Buckley M; Sandstrom R; Vierstra J; Kaul R; Stamatoyannopoulos J Nature; 2020 Aug; 584(7820):244-251. PubMed ID: 32728217 [TBL] [Abstract][Full Text] [Related]
24. Prediction of DNase I hypersensitive sites by using pseudo nucleotide compositions. Feng P; Jiang N; Liu N ScientificWorldJournal; 2014; 2014():740506. PubMed ID: 25215331 [TBL] [Abstract][Full Text] [Related]
25. iDHS-DSAMS: Identifying DNase I hypersensitive sites based on the dinucleotide property matrix and ensemble bagged tree. Zhang S; Yu Q; He H; Zhu F; Wu P; Gu L; Jiang S Genomics; 2020 Mar; 112(2):1282-1289. PubMed ID: 31377426 [TBL] [Abstract][Full Text] [Related]
26. Genome-Wide Identification of Regulatory DNA Elements in Crop Plants. Li Z; Wang K Methods Mol Biol; 2020; 2072():85-99. PubMed ID: 31541440 [TBL] [Abstract][Full Text] [Related]
27. iDHS-RGME: Identification of DNase I hypersensitive sites by integrating information on nucleotide composition and physicochemical properties. Jin J; Feng J Biochem Biophys Res Commun; 2024 Nov; 734():150618. PubMed ID: 39222575 [TBL] [Abstract][Full Text] [Related]
28. Genome-Wide Characterization of DNase I-Hypersensitive Sites and Cold Response Regulatory Landscapes in Grasses. Han J; Wang P; Wang Q; Lin Q; Chen Z; Yu G; Miao C; Dao Y; Wu R; Schnable JC; Tang H; Wang K Plant Cell; 2020 Aug; 32(8):2457-2473. PubMed ID: 32471863 [TBL] [Abstract][Full Text] [Related]
29. Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Sabo PJ; Kuehn MS; Thurman R; Johnson BE; Johnson EM; Cao H; Yu M; Rosenzweig E; Goldy J; Haydock A; Weaver M; Shafer A; Lee K; Neri F; Humbert R; Singer MA; Richmond TA; Dorschner MO; McArthur M; Hawrylycz M; Green RD; Navas PA; Noble WS; Stamatoyannopoulos JA Nat Methods; 2006 Jul; 3(7):511-8. PubMed ID: 16791208 [TBL] [Abstract][Full Text] [Related]
30. Correlation between DNase I hypersensitive site distribution and gene expression in HeLa S3 cells. Wang YM; Zhou P; Wang LY; Li ZH; Zhang YN; Zhang YX PLoS One; 2012; 7(8):e42414. PubMed ID: 22900019 [TBL] [Abstract][Full Text] [Related]
31. Genome-Wide Mapping of DNase I Hypersensitive Sites in Tomato. Li R; Cui X Methods Mol Biol; 2018; 1830():367-379. PubMed ID: 30043382 [TBL] [Abstract][Full Text] [Related]
32. iDHS-Deep: an integrated tool for predicting DNase I hypersensitive sites by deep neural network. Dao FY; Lv H; Su W; Sun ZJ; Huang QL; Lin H Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33751027 [TBL] [Abstract][Full Text] [Related]
33. Patterns of regulatory activity across diverse human cell types predict tissue identity, transcription factor binding, and long-range interactions. Sheffield NC; Thurman RE; Song L; Safi A; Stamatoyannopoulos JA; Lenhard B; Crawford GE; Furey TS Genome Res; 2013 May; 23(5):777-88. PubMed ID: 23482648 [TBL] [Abstract][Full Text] [Related]
34. Genome-wide DNase I-hypersensitive site assay reveals distinct genomic distributions and functional features of open chromatin in autopolyploid sugarcane. Yu G; Sun B; Zhu Z; Mehareb EM; Teng A; Han J; Zhang H; Liu J; Liu X; Raza G; Zhang B; Zhang Y; Wang K Plant J; 2024 Jan; 117(2):573-589. PubMed ID: 37897092 [TBL] [Abstract][Full Text] [Related]
35. Gammaretroviral vector integration occurs overwhelmingly within and near DNase hypersensitive sites. Liu M; Li CL; Stamatoyannopoulos G; Dorschner MO; Humbert R; Stamatoyannopoulos JA; Emery DW Hum Gene Ther; 2012 Feb; 23(2):231-7. PubMed ID: 21981728 [TBL] [Abstract][Full Text] [Related]
36. High-throughput localization of functional elements by quantitative chromatin profiling. Dorschner MO; Hawrylycz M; Humbert R; Wallace JC; Shafer A; Kawamoto J; Mack J; Hall R; Goldy J; Sabo PJ; Kohli A; Li Q; McArthur M; Stamatoyannopoulos JA Nat Methods; 2004 Dec; 1(3):219-25. PubMed ID: 15782197 [TBL] [Abstract][Full Text] [Related]
38. DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays. Crawford GE; Davis S; Scacheri PC; Renaud G; Halawi MJ; Erdos MR; Green R; Meltzer PS; Wolfsberg TG; Collins FS Nat Methods; 2006 Jul; 3(7):503-9. PubMed ID: 16791207 [TBL] [Abstract][Full Text] [Related]
39. LangMoDHS: A deep learning language model for predicting DNase I hypersensitive sites in mouse genome. Tang X; Zheng P; Liu Y; Yao Y; Huang G Math Biosci Eng; 2023 Jan; 20(1):1037-1057. PubMed ID: 36650801 [TBL] [Abstract][Full Text] [Related]
40. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data. Kähärä J; Lähdesmäki H Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]