These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33481716)

  • 41. Proliferation of Regulatory DNA Elements Derived from Transposable Elements in the Maize Genome.
    Zhao H; Zhang W; Chen L; Wang L; Marand AP; Wu Y; Jiang J
    Plant Physiol; 2018 Apr; 176(4):2789-2803. PubMed ID: 29463772
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-Wide Identification of DNase I Hypersensitive Sites in Plants.
    Wang Y; Wang K
    Curr Protoc; 2021 Jun; 1(6):e148. PubMed ID: 34101388
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Decoding a signature-based model of transcription cofactor recruitment dictated by cardinal cis-regulatory elements in proximal promoter regions.
    Benner C; Konovalov S; Mackintosh C; Hutt KR; Stunnenberg R; Garcia-Bassets I
    PLoS Genet; 2013 Nov; 9(11):e1003906. PubMed ID: 24244184
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection.
    Shibata Y; Sheffield NC; Fedrigo O; Babbitt CC; Wortham M; Tewari AK; London D; Song L; Lee BK; Iyer VR; Parker SC; Margulies EH; Wray GA; Furey TS; Crawford GE
    PLoS Genet; 2012 Jun; 8(6):e1002789. PubMed ID: 22761590
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome-wide mapping of DNase I hypersensitive sites in rare cell populations using single-cell DNase sequencing.
    Cooper J; Ding Y; Song J; Zhao K
    Nat Protoc; 2017 Nov; 12(11):2342-2354. PubMed ID: 29022941
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome-wide mapping of DNase I hypersensitive sites in plants.
    Zhang W; Jiang J
    Methods Mol Biol; 2015; 1284():71-89. PubMed ID: 25757768
    [TBL] [Abstract][Full Text] [Related]  

  • 47. pDHS-DSET: Prediction of DNase I hypersensitive sites in plant genome using DS evidence theory.
    Zhang S; Lin J; Su L; Zhou Z
    Anal Biochem; 2019 Jan; 564-565():54-63. PubMed ID: 30339812
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNase I digestion of isolated nulcei for genome-wide mapping of DNase hypersensitivity sites in chromatin.
    Ling G; Waxman DJ
    Methods Mol Biol; 2013; 977():21-33. PubMed ID: 23436351
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genome-scale mapping of DNase I hypersensitivity.
    John S; Sabo PJ; Canfield TK; Lee K; Vong S; Weaver M; Wang H; Vierstra J; Reynolds AP; Thurman RE; Stamatoyannopoulos JA
    Curr Protoc Mol Biol; 2013 Jul; Chapter 27():Unit 21.27. PubMed ID: 23821440
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis.
    Zhang W; Zhang T; Wu Y; Jiang J
    Plant Cell; 2012 Jul; 24(7):2719-31. PubMed ID: 22773751
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genome-wide discovery of active regulatory elements and transcription factor footprints in
    Ho MCW; Quintero-Cadena P; Sternberg PW
    Genome Res; 2017 Dec; 27(12):2108-2119. PubMed ID: 29074739
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of a DNase I hypersensitive site located -20.9 kb upstream of the CFTR gene.
    Nuthall HN; Vassaux G; Huxley C; Harris A
    Eur J Biochem; 1999 Dec; 266(2):431-43. PubMed ID: 10561583
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DNase-seq to Study Chromatin Accessibility in Early
    Cho JS; Blitz IL; Cho KWY
    Cold Spring Harb Protoc; 2019 Apr; 2019(4):pdb.prot098335. PubMed ID: 30131367
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genomic Footprinting Analyses from DNase-seq Data to Construct Gene Regulatory Networks.
    Moyano TC; GutiƩrrez RA; Alvarez JM
    Methods Mol Biol; 2021; 2328():25-46. PubMed ID: 34251618
    [TBL] [Abstract][Full Text] [Related]  

  • 55. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Progress on identification and analysis of DNase I hypersensitive sites in plant genomes].
    Zhang T; Yang ZJ
    Yi Chuan; 2013 Jul; 35(7):867-74. PubMed ID: 23853357
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unveiling the gene regulatory landscape in diseases through the identification of DNase I-hypersensitive sites.
    Chen Y; Chen A
    Biomed Rep; 2019 Sep; 11(3):87-97. PubMed ID: 31423302
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of cis-acting elements as DNase I hypersensitive sites in lysozyme gene chromatin.
    Sippel AE; Saueressig H; Huber MC; Hoefer HC; Stief A; Borgmeyer U; Bonifer C
    Methods Enzymol; 1996; 274():233-46. PubMed ID: 8902808
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in the CFTR gene.
    Phylactides M; Rowntree R; Nuthall H; Ussery D; Wheeler A; Harris A
    Eur J Biochem; 2002 Jan; 269(2):553-9. PubMed ID: 11856314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.