These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33481856)

  • 1. Bayesian algorithm to estimate position and activity of an orphan gamma source utilizing multiple detectors in a mobile gamma spectrometry system.
    Bukartas A; Wallin J; Finck R; Rääf C
    PLoS One; 2021; 16(1):e0245440. PubMed ID: 33481856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of a Bayesian technique to estimate position and activity of orphan gamma-ray sources by mobile gamma spectrometry: Influence of imprecisions in positioning systems and computational approximations.
    Bukartas A; Wallin J; Finck R; Rääf C
    PLoS One; 2022; 17(6):e0268556. PubMed ID: 35731746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tests of HPGe- and scintillation-based backpack γ-radiation survey systems.
    Nilsson JM; Östlund K; Söderberg J; Mattsson S; Rääf C
    J Environ Radioact; 2014 Sep; 135():54-62. PubMed ID: 24776755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of CdTe, HPGe and NaI(Tl) detectors for radioactivity measurements.
    Perez-Andujar A; Pibida L
    Appl Radiat Isot; 2004 Jan; 60(1):41-7. PubMed ID: 14687635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the Environmental Radiation Survey Program and Its Application to In Situ Gamma-Ray Spectrometry.
    Ji YY; Jang M; Lee W
    Health Phys; 2019 Jun; 116(6):840-851. PubMed ID: 30889101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutron fluence rate measurement using prompt gamma rays.
    Vega-Carrillo HR; Manzanares-Acuña E; Hernández-Dávila VM; Chacón-Ruíz A; Gallego E; Lorente A
    Radiat Prot Dosimetry; 2007; 126(1-4):265-8. PubMed ID: 17513856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of PENELOPE code to the efficiency calibration of coaxial germanium detectors.
    Jurado Vargas M; Guerra AL
    Appl Radiat Isot; 2006; 64(10-11):1319-22. PubMed ID: 16549348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gamma-ray imaging with a Si/CsI(Tl) Compton detector.
    Hoover AS; Sullivan JP; Baird B; Brumby SP; Kippen RM; McCluskey CW; Rawool-Sullivan MW; Sorensen EB
    Appl Radiat Isot; 2006 Dec; 64(12):1648-54. PubMed ID: 16837205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Various Spectra Methods Used in Vehicle-Based Nai(Tl) Spectrometry Survey.
    Li H; Liu J
    Health Phys; 2016 Aug; 111(2 Suppl 2):S133-40. PubMed ID: 27356163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical expressions for the computation of coincidence-summing correction factors in gamma-ray spectrometry with HPGe detectors.
    Rizzo S; Tomarchio E
    Appl Radiat Isot; 2010; 68(4-5):555-60. PubMed ID: 19892555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved neutron detection by gamma-ray spectroscopy.
    Alfassi ZB; Zlatin T; Manor O; Dubinsky S; German U
    Radiat Prot Dosimetry; 2004; 110(1-4):207-11. PubMed ID: 15353646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Approach for the Determination of Dose Rate and Radioactivity for Detected Gamma Nuclides Using an Environmental Radiation Monitor Based on an NaI(Tl) Detector.
    Ji YY; Kim CJ; Lim KS; Lee W; Chang HS; Chung KH
    Health Phys; 2017 Oct; 113(4):304-314. PubMed ID: 28796752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air Kerma Rate estimation by means of in-situ gamma spectrometry: a Bayesian approach.
    Cabal G; Kluson J
    Appl Radiat Isot; 2010; 68(4-5):804-6. PubMed ID: 19914079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and MC determination of HPGe detector efficiency in the 40-2754 keV energy range for measuring point source geometry with the source-to-detector distance of 25 cm.
    Dryak P; Kovar P
    Appl Radiat Isot; 2006; 64(10-11):1346-9. PubMed ID: 16564693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, construction and characterisation of a portable gamma-ray spectrometer for low-level natural occurring radioactive material ex-situ measurement.
    Bashir M; Newman RT; Jones P
    J Environ Radioact; 2020 Dec; 225():106415. PubMed ID: 33032005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The first experimental test of the MEFFTRAN software on HPGe detector calibration for environmental samples.
    Nikolic JK; Rajacic M; Todorovic D; Vidmar T
    J Environ Radioact; 2016 Dec; 165():191-196. PubMed ID: 27736653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IN-SITU GAMMA-RAY SPECTROMETRY FOR RADIOACTIVITY ANALYSIS OF SOIL USING NaI(Tl) AND LaBr3(Ce) DETECTORS.
    Lee JH; Byun JI
    Radiat Prot Dosimetry; 2019 Dec; 187(3):300-309. PubMed ID: 31268526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radioactivity measurements in the aquatic environment using in-situ and laboratory gamma-ray spectrometry.
    Eleftheriou G; Tsabaris C; Androulakaki EG; Patiris DL; Kokkoris M; Kalfas CA; Vlastou R
    Appl Radiat Isot; 2013 Dec; 82():268-78. PubMed ID: 24103707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximum detection distances for gamma emitting point sources in mobile gamma spectrometry.
    Finck R; Bukartas A; Jönsson M; Rääf C
    Appl Radiat Isot; 2022 Jun; 184():110195. PubMed ID: 35338972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method based on Monte Carlo simulation for the determination of the G(E) function.
    Chen W; Feng T; Liu J; Su C; Tian Y
    Radiat Prot Dosimetry; 2015 Feb; 163(2):217-21. PubMed ID: 24795395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.