These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 33481915)

  • 1. Correction: Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture.
    PLOS ONE Staff
    PLoS One; 2021; 16(1):e0246105. PubMed ID: 33481915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture.
    Lee B; Yamanakkanavar N; Malik MA; Choi JY
    PLoS One; 2022; 17(2):e0264231. PubMed ID: 35157733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Approach for Fully Automatic Intra-Tumor Segmentation With 3D U-Net Architecture for Gliomas.
    Baid U; Talbar S; Rane S; Gupta S; Thakur MH; Moiyadi A; Sable N; Akolkar M; Mahajan A
    Front Comput Neurosci; 2020; 14():10. PubMed ID: 32132913
    [No Abstract]   [Full Text] [Related]  

  • 4. Correction: Novel stochastic framework for automatic segmentation of human thigh MRI volumes and its applications in spinal cord injured individuals.
    Mesbah S; Shalaby AM; Stills S; Soliman A; Willhite A; Harkema SJ; Rejc E; El-Baz AS
    PLoS One; 2019; 14(7):e0219810. PubMed ID: 31310609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Breast and Fibroglandular Tissue Segmentation in Breast MRI Using Deep Learning by a Fully-Convolutional Residual Neural Network U-Net.
    Zhang Y; Chen JH; Chang KT; Park VY; Kim MJ; Chan S; Chang P; Chow D; Luk A; Kwong T; Su MY
    Acad Radiol; 2019 Nov; 26(11):1526-1535. PubMed ID: 30713130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating minimal user input into deep learning based image segmentation.
    Shahedi M; Halicek M; Dormer JD; Fei B
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11313():. PubMed ID: 32476701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrigendum: Improving Patch-Based Convolutional Neural Networks for MRI Brain Tumor Segmentation by Leveraging Location Information.
    Kao PY; Shailja S; Jiang J; Zhang A; Khan A; Chen JW; Manjunath BS
    Front Neurosci; 2020; 14():328. PubMed ID: 32351354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convolutional neural network for automated mass segmentation in mammography.
    Abdelhafiz D; Bi J; Ammar R; Yang C; Nabavi S
    BMC Bioinformatics; 2020 Dec; 21(Suppl 1):192. PubMed ID: 33297952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic myocardial segmentation in dynamic contrast enhanced perfusion MRI using Monte Carlo dropout in an encoder-decoder convolutional neural network.
    Kim YC; Kim KR; Choe YH
    Comput Methods Programs Biomed; 2020 Mar; 185():105150. PubMed ID: 31671341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microaneurysms segmentation with a U-Net based on recurrent residual convolutional neural network.
    Kou C; Li W; Liang W; Yu Z; Hao J
    J Med Imaging (Bellingham); 2019 Apr; 6(2):025008. PubMed ID: 31259200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dilated Saliency U-Net for White Matter Hyperintensities Segmentation Using Irregularity Age Map.
    Jeong Y; Rachmadi MF; Valdés-Hernández MDC; Komura T
    Front Aging Neurosci; 2019; 11():150. PubMed ID: 31316369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Cerebellar Nuclei Segmentation via Semi-Supervised Deep Context-Aware Learning from 7T Diffusion MRI.
    Kim J; Patriat R; Kaplan J; Solomon O; Harel N
    IEEE Access; 2020; 8():101550-101568. PubMed ID: 32656051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
    Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A
    Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Modified U-Net Convolutional Network Featuring a Nearest-neighbor Re-sampling-based Elastic-Transformation for Brain Tissue Characterization and Segmentation.
    Hasan SMK; Linte CA
    Proc IEEE West N Y Image Signal Process Workshop; 2018 Oct; 2018():. PubMed ID: 31218299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction: Three-dimensional visualization of brain tumor progression based accurate segmentation via comparative holographic projection.
    PLOS ONE staff
    PLoS One; 2021; 16(5):e0251614. PubMed ID: 33970964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Adversarial Network Architecture Using 2D U-Net Models for Segmentation of Left Ventricle from Cine Cardiac MRI.
    Upendra RR; Dangi S; Linte CA
    Funct Imaging Model Heart; 2019 Jun; 11504():415-424. PubMed ID: 32699845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction: Time- and depth-wise trophic niche shifts in Antarctic benthos.
    PLOS ONE Staff
    PLoS One; 2018; 13(5):e0197009. PubMed ID: 29718997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DRRNet: Dense Residual Refine Networks for Automatic Brain Tumor Segmentation.
    Sun J; Chen W; Peng S; Liu B
    J Med Syst; 2019 Jun; 43(7):221. PubMed ID: 31177346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ω-Net (Omega-Net): Fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks.
    Vigneault DM; Xie W; Ho CY; Bluemke DA; Noble JA
    Med Image Anal; 2018 Aug; 48():95-106. PubMed ID: 29857330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.