BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33481971)

  • 1. Two different regimes in alcohol-induced coil-helix transition: effects of 2,2,2-trifluoroethanol on proteins being either independent of or enhanced by solvent structural fluctuations.
    Ohgi H; Imamura H; Sumi T; Nishikawa K; Koga Y; Westh P; Morita T
    Phys Chem Chem Phys; 2021 Mar; 23(10):5760-5772. PubMed ID: 33481971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the Role of 2,2,2-Trifluoroethanol Solvent Dynamics in Inducing Conformational Transitions in Melittin: An Approach with Solvent
    Chaubey B; Dey A; Banerjee A; Chandrakumar N; Pal S
    J Phys Chem B; 2020 Jul; 124(28):5993-6003. PubMed ID: 32573229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water.
    Luo P; Baldwin RL
    Biochemistry; 1997 Jul; 36(27):8413-21. PubMed ID: 9204889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study.
    Roccatano D; Colombo G; Fioroni M; Mark AE
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12179-84. PubMed ID: 12196631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upgrading of the general AMBER force field 2 for fluorinated alcohol biosolvents: A validation for water solutions and melittin solvation.
    Casoria M; Macchiagodena M; Rovero P; Andreini C; Papini AM; Cardini G; Pagliai M
    J Pept Sci; 2024 Feb; 30(2):e3543. PubMed ID: 37734745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular thermodynamics of trifluoroethanol-induced helix formation: analysis of the solvation structure and free energy by the 3D-RISM theory.
    Imai T; Kovalenko A; Hirata F; Kidera A
    Interdiscip Sci; 2009 Jun; 1(2):156-60. PubMed ID: 20640830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helix-enhancing propensity of fluoro and alkyl alcohols: influence of pH, temperature and cosolvent concentration on the helical conformation of peptides.
    Kumaran S; Roy RP
    J Pept Res; 1999 Mar; 53(3):284-93. PubMed ID: 10231716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of TFE on the Helical Content of AK17 and HAL-1 Peptides: Theoretical Insights into the Mechanism of Helix Stabilization.
    Vymětal J; Bednárová L; Vondrášek J
    J Phys Chem B; 2016 Feb; 120(6):1048-59. PubMed ID: 26786280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of the common and opposing cosolvent effects of fluorinated alcohol and urea on a coiled coil protein.
    Nakata N; Okamoto R; Sumi T; Koga K; Morita T; Imamura H
    Protein Sci; 2023 Oct; 32(10):e4763. PubMed ID: 37622187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. About TFE: Old and New Findings.
    Vincenzi M; Mercurio FA; Leone M
    Curr Protein Pept Sci; 2019; 20(5):425-451. PubMed ID: 30767740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative alpha-helix formation of beta-lactoglobulin and melittin induced by hexafluoroisopropanol.
    Hirota N; Mizuno K; Goto Y
    Protein Sci; 1997 Feb; 6(2):416-21. PubMed ID: 9041644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of complete hydrophobic coating of bombesin by trifluoroethanol in aqueous solution: an NMR spectroscopic and molecular dynamics study.
    Díaz MD; Fioroni M; Burger K; Berger S
    Chemistry; 2002 Apr; 8(7):1663-9. PubMed ID: 11933094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative determination of helical propensities from trifluoroethanol titration curves.
    Jasanoff A; Fersht AR
    Biochemistry; 1994 Mar; 33(8):2129-35. PubMed ID: 8117669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1,1,1,3,3,3-Hexafluoro-2-propanol and 2,2,2-trifluoroethanol solvents induce self-assembly with different surface morphology in an aromatic dipeptide.
    Reddy SM; Shanmugam G; Mandal AB
    Org Biomol Chem; 2014 Aug; 12(32):6181-9. PubMed ID: 24999600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helical Structure of Recombinant Melittin.
    Ramirez LS; Pande J; Shekhtman A
    J Phys Chem B; 2019 Jan; 123(2):356-368. PubMed ID: 30570258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and dynamics of halogenoethanol-water mixtures studied by large-angle X-ray scattering, small-angle neutron scattering, and NMR relaxation.
    Takamuku T; Kumai T; Yoshida K; Otomo T; Yamaguchi T
    J Phys Chem A; 2005 Sep; 109(34):7667-76. PubMed ID: 16834140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium and folding simulations of NS4B H2 in pure water and water/2,2,2-trifluoroethanol mixed solvent: examination of solvation models.
    Guo M; Mei Y
    J Mol Model; 2013 Sep; 19(9):3931-9. PubMed ID: 23832653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trifluoroethanol promotes helix formation by destabilizing backbone exposure: desolvation rather than native hydrogen bonding defines the kinetic pathway of dimeric coiled coil folding.
    Kentsis A; Sosnick TR
    Biochemistry; 1998 Oct; 37(41):14613-22. PubMed ID: 9772190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trifluoroethanol-induced conformational transition of the C-terminal sterile alpha motif (SAM) of human p73.
    Neira JL; Cámara-Artigas A
    Arch Biochem Biophys; 2017 Apr; 619():1-9. PubMed ID: 28235466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins.
    Buck M
    Q Rev Biophys; 1998 Aug; 31(3):297-355. PubMed ID: 10384688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.