BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33482147)

  • 1. L-Dehydroascorbate efficiently degrades non-thermal plasma-induced hydrogen peroxide.
    Okazaki Y; Ishidzu Y; Ito F; Tanaka H; Hori M; Toyokuni S
    Arch Biochem Biophys; 2021 Mar; 700():108762. PubMed ID: 33482147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-thermal plasma-induced DMPO-OH yields hydrogen peroxide.
    Okazaki Y; Tanaka H; Matsumoto KI; Hori M; Toyokuni S
    Arch Biochem Biophys; 2021 Jul; 705():108901. PubMed ID: 33964248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. l-Dehydroascorbic acid recycled by thiols efficiently scavenges non-thermal plasma-induced hydroxyl radicals.
    Okazaki Y; Tanaka H; Hori M; Toyokuni S
    Arch Biochem Biophys; 2019 Jul; 669():87-95. PubMed ID: 31153952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-thermal plasma elicits ferrous chloride-catalyzed DMPO-OH.
    Okazaki Y; Ito N; Tanaka H; Hori M; Toyokuni S
    Free Radic Res; 2022; 56(9-10):595-606. PubMed ID: 36519277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetrachloroaurate (III)-induced oxidation increases non-thermal plasma-induced oxidative stress.
    Okazaki Y; Sasaki K; Ito N; Tanaka H; Matsumoto KI; Hori M; Toyokuni S
    Free Radic Res; 2022 Jan; 56(1):17-27. PubMed ID: 35077248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The oxidation of dehydroascorbic acid and 2,3-diketogulonate by distinct reactive oxygen species.
    Dewhirst RA; Fry SC
    Biochem J; 2018 Nov; 475(21):3451-3470. PubMed ID: 30348642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of indigo carmine in water induced by non-thermal plasma, ozone and hydrogen peroxide: A comparative study and by-product identification.
    Crema APS; Piazza Borges LD; Micke GA; Debacher NA
    Chemosphere; 2020 Apr; 244():125502. PubMed ID: 31837564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polysulfides and products of H
    Misak A; Grman M; Bacova Z; Rezuchova I; Hudecova S; Ondriasova E; Krizanova O; Brezova V; Chovanec M; Ondrias K
    Nitric Oxide; 2018 Jun; 76():136-151. PubMed ID: 28951200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of reactive oxygen species and DNA strand breakage during interaction of chromium (III) and hydrogen peroxide in vitro: evidence for a chromium (III)-mediated Fenton-like reaction.
    Tsou TC; Yang JL
    Chem Biol Interact; 1996 Dec; 102(3):133-53. PubMed ID: 9021167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE; Roeder TL; Buettner GR
    Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of hydrogen peroxide and methionine sulfoxide by epigallocatechin gallate and antioxidants.
    Sakagami H; Arakawa H; Maeda M; Satoh K; Kadofuku T; Fukuchi K; Gomi K
    Anticancer Res; 2001; 21(4A):2633-41. PubMed ID: 11724332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do We Appropriately Detect and Understand Singlet Oxygen Possibly Generated in Advanced Oxidation Processes by Electron Paramagnetic Resonance Spectroscopy?
    Zong Y; Chen L; Zeng Y; Xu J; Zhang H; Zhang X; Liu W; Wu D
    Environ Sci Technol; 2023 Jun; 57(25):9394-9404. PubMed ID: 37311080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcellular mechanism of microbial inactivation during water disinfection by cold atmospheric-pressure plasma.
    Xu H; Zhu Y; Du M; Wang Y; Ju S; Ma R; Jiao Z
    Water Res; 2021 Jan; 188():116513. PubMed ID: 33091801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactions of copper(II)-N-polycarboxylate complexes with hydrogen peroxide in the presence of biological reductants: ESR evidence for the formation of hydroxyl radical.
    Ozawa T; Hanaki A; Onodera K; Kasai M
    Biochem Int; 1992 Mar; 26(3):477-83. PubMed ID: 1320883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactions of active oxygen and nitrogen species studied by EPR and spin trapping.
    Carmichael AJ; Steel-Goodwin L; Gray B; Arroyo CM
    Free Radic Res Commun; 1993; 19 Suppl 1():S1-16. PubMed ID: 8282210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide-dependent oxidation of extracellular reducing agents by isolated neutrophils.
    Thomas EL; Learn DB; Jefferson MM; Weatherred W
    J Biol Chem; 1988 Feb; 263(5):2178-86. PubMed ID: 2828362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical Evaluation of the Interaction of Reactive Oxygen and Nitrogen Species with Blood to Inform the Clinical Translation of Nonthermal Plasma Therapy.
    Lin A; Biscop E; Breen C; Butler SJ; Smits E; Bogaerts A
    Oxid Med Cell Longev; 2020; 2020():9750206. PubMed ID: 33343810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vanadate-induced activation of activator protein-1: role of reactive oxygen species.
    Ding M; Li JJ; Leonard SS; Ye JP; Shi X; Colburn NH; Castranova V; Vallyathan V
    Carcinogenesis; 1999 Apr; 20(4):663-8. PubMed ID: 10223197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of BX661A, a new therapeutic agent for ulcerative colitis, on reactive oxygen species in comparison with salazosulfapyridine and its metabolite sulfapyridine.
    Kimura I; Kumamoto T; Matsuda A; Kataoka M; Kokuba Y
    Arzneimittelforschung; 1998 Oct; 48(10):1007-11. PubMed ID: 9825118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation.
    Kuppusamy P; Zweier JL
    J Biol Chem; 1989 Jun; 264(17):9880-4. PubMed ID: 2542334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.