BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

529 related articles for article (PubMed ID: 33482173)

  • 1. CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin.
    Pieplow A; Dastaw M; Sakuma T; Sakamoto N; Yamamoto T; Yajima M; Oulhen N; Wessel GM
    Dev Biol; 2021 Apr; 472():85-97. PubMed ID: 33482173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system.
    Lin CY; Su YH
    Dev Biol; 2016 Jan; 409(2):420-8. PubMed ID: 26632489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single nucleotide editing without DNA cleavage using CRISPR/Cas9-deaminase in the sea urchin embryo.
    Shevidi S; Uchida A; Schudrowitz N; Wessel GM; Yajima M
    Dev Dyn; 2017 Dec; 246(12):1036-1046. PubMed ID: 28857338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus.
    Damle S; Davidson EH
    Dev Biol; 2011 Sep; 357(2):505-17. PubMed ID: 21723273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient translational quiescence in primordial germ cells.
    Oulhen N; Swartz SZ; Laird J; Mascaro A; Wessel GM
    Development; 2017 Apr; 144(7):1201-1210. PubMed ID: 28235822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct transcriptional regulation of Nanos2 in the germ line and soma by the Wnt and delta/notch pathways.
    Oulhen N; Swartz SZ; Wang L; Wikramanayake A; Wessel GM
    Dev Biol; 2019 Aug; 452(1):34-42. PubMed ID: 31075220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental cis-regulatory analysis of the cyclin D gene in the sea urchin Strongylocentrotus purpuratus.
    McCarty CM; Coffman JA
    Biochem Biophys Res Commun; 2013 Oct; 440(3):413-8. PubMed ID: 24090975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo.
    Gandhi S; Piacentino ML; Vieceli FM; Bronner ME
    Dev Biol; 2017 Dec; 432(1):86-97. PubMed ID: 29150011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin.
    Oulhen N; Wessel GM
    Dev Biol; 2016 Oct; 418(1):146-156. PubMed ID: 27424271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method, using cis-regulatory control, for blocking embryonic gene expression.
    Smith J; Davidson EH
    Dev Biol; 2008 Jun; 318(2):360-5. PubMed ID: 18423438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo.
    Stamatiadis P; Cosemans G; Boel A; Menten B; De Sutter P; Stoop D; Chuva de Sousa Lopes SM; Lluis F; Coucke P; Heindryckx B
    Hum Reprod; 2022 Jul; 37(8):1760-1773. PubMed ID: 35700449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversification of oral and aboral mesodermal regulatory states in pregastrular sea urchin embryos.
    Materna SC; Ransick A; Li E; Davidson EH
    Dev Biol; 2013 Mar; 375(1):92-104. PubMed ID: 23261933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Mediated Transcriptional Repression in Toxoplasma gondii.
    Markus BM; Boydston EA; Lourido S
    mSphere; 2021 Oct; 6(5):e0047421. PubMed ID: 34643425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Germline Gene Editing in Chickens by Efficient CRISPR-Mediated Homologous Recombination in Primordial Germ Cells.
    Dimitrov L; Pedersen D; Ching KH; Yi H; Collarini EJ; Izquierdo S; van de Lavoir MC; Leighton PA
    PLoS One; 2016; 11(4):e0154303. PubMed ID: 27099923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cis-regulatory control of the nuclear receptor Coup-TF gene in the sea urchin Paracentrotus lividus embryo.
    Kalampoki LG; Flytzanis CN
    PLoS One; 2014; 9(11):e109274. PubMed ID: 25386650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early asymmetric cues triggering the dorsal/ventral gene regulatory network of the sea urchin embryo.
    Cavalieri V; Spinelli G
    Elife; 2014 Dec; 3():e04664. PubMed ID: 25457050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption.
    Johansen AK; Molenaar B; Versteeg D; Leitoguinho AR; Demkes C; Spanjaard B; de Ruiter H; Akbari Moqadam F; Kooijman L; Zentilin L; Giacca M; van Rooij E
    Circ Res; 2017 Oct; 121(10):1168-1181. PubMed ID: 28851809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transcriptome of the sea urchin embryo.
    Samanta MP; Tongprasit W; Istrail S; Cameron RA; Tu Q; Davidson EH; Stolc V
    Science; 2006 Nov; 314(5801):960-2. PubMed ID: 17095694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.