These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 33482329)
1. Human-scale Brain Simulation via Supercomputer: A Case Study on the Cerebellum. Yamazaki T; Igarashi J; Yamaura H Neuroscience; 2021 May; 462():235-246. PubMed ID: 33482329 [TBL] [Abstract][Full Text] [Related]
2. Simulation of a Human-Scale Cerebellar Network Model on the K Computer. Yamaura H; Igarashi J; Yamazaki T Front Neuroinform; 2020; 14():16. PubMed ID: 32317955 [TBL] [Abstract][Full Text] [Related]
3. Large-Scale Simulation of a Layered Cortical Sheet of Spiking Network Model Using a Tile Partitioning Method. Igarashi J; Yamaura H; Yamazaki T Front Neuroinform; 2019; 13():71. PubMed ID: 31849631 [TBL] [Abstract][Full Text] [Related]
4. Supercomputers ready for use as discovery machines for neuroscience. Helias M; Kunkel S; Masumoto G; Igarashi J; Eppler JM; Ishii S; Fukai T; Morrison A; Diesmann M Front Neuroinform; 2012; 6():26. PubMed ID: 23129998 [TBL] [Abstract][Full Text] [Related]
5. Realistic modeling of neurons and networks: towards brain simulation. D'Angelo E; Solinas S; Garrido J; Casellato C; Pedrocchi A; Mapelli J; Gandolfi D; Prestori F Funct Neurol; 2013; 28(3):153-66. PubMed ID: 24139652 [TBL] [Abstract][Full Text] [Related]
6. Realtime cerebellum: a large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit. Yamazaki T; Igarashi J Neural Netw; 2013 Nov; 47():103-11. PubMed ID: 23434303 [TBL] [Abstract][Full Text] [Related]
7. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers. Jordan J; Ippen T; Helias M; Kitayama I; Sato M; Igarashi J; Diesmann M; Kunkel S Front Neuroinform; 2018; 12():2. PubMed ID: 29503613 [TBL] [Abstract][Full Text] [Related]
8. Spiking network simulation code for petascale computers. Kunkel S; Schmidt M; Eppler JM; Plesser HE; Masumoto G; Igarashi J; Ishii S; Fukai T; Morrison A; Diesmann M; Helias M Front Neuroinform; 2014; 8():78. PubMed ID: 25346682 [TBL] [Abstract][Full Text] [Related]
10. Real-time cortical simulation on neuromorphic hardware. Rhodes O; Peres L; Rowley AGD; Gait A; Plana LA; Brenninkmeijer C; Furber SB Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2164):20190160. PubMed ID: 31865885 [TBL] [Abstract][Full Text] [Related]
11. Towards the Simulation of a Realistic Large-Scale Spiking Network on a Desktop Multi-GPU System. Torti E; Florimbi G; Dorici A; Danese G; Leporati F Bioengineering (Basel); 2022 Oct; 9(10):. PubMed ID: 36290510 [TBL] [Abstract][Full Text] [Related]
12. Meeting the memory challenges of brain-scale network simulation. Kunkel S; Potjans TC; Eppler JM; Plesser HE; Morrison A; Diesmann M Front Neuroinform; 2011; 5():35. PubMed ID: 22291636 [TBL] [Abstract][Full Text] [Related]
13. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853 [TBL] [Abstract][Full Text] [Related]
14. Scalable Digital Neuromorphic Architecture for Large-Scale Biophysically Meaningful Neural Network With Multi-Compartment Neurons. Yang S; Deng B; Wang J; Li H; Lu M; Che Y; Wei X; Loparo KA IEEE Trans Neural Netw Learn Syst; 2020 Jan; 31(1):148-162. PubMed ID: 30892250 [TBL] [Abstract][Full Text] [Related]
15. The SONATA data format for efficient description of large-scale network models. Dai K; Hernando J; Billeh YN; Gratiy SL; Planas J; Davison AP; Dura-Bernal S; Gleeson P; Devresse A; Dichter BK; Gevaert M; King JG; Van Geit WAH; Povolotsky AV; Muller E; Courcol JD; Arkhipov A PLoS Comput Biol; 2020 Feb; 16(2):e1007696. PubMed ID: 32092054 [TBL] [Abstract][Full Text] [Related]
16. Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units. Igarashi J; Shouno O; Fukai T; Tsujino H Neural Netw; 2011 Nov; 24(9):950-60. PubMed ID: 21764258 [TBL] [Abstract][Full Text] [Related]
17. The Scientific Case for Brain Simulations. Einevoll GT; Destexhe A; Diesmann M; Grün S; Jirsa V; de Kamps M; Migliore M; Ness TV; Plesser HE; Schürmann F Neuron; 2019 May; 102(4):735-744. PubMed ID: 31121126 [TBL] [Abstract][Full Text] [Related]
18. Parallel Computing for Brain Simulation. Pastur-Romay LA; Porto-Pazos AB; Cedron F; Pazos A Curr Top Med Chem; 2017; 17(14):1646-1668. PubMed ID: 27823566 [TBL] [Abstract][Full Text] [Related]
19. A New Computational Model for Astrocytes and Their Role in Biologically Realistic Neural Networks. Sajedinia Z; Hélie S Comput Intell Neurosci; 2018; 2018():3689487. PubMed ID: 30073021 [TBL] [Abstract][Full Text] [Related]
20. Translating network models to parallel hardware in NEURON. Hines ML; Carnevale NT J Neurosci Methods; 2008 Apr; 169(2):425-55. PubMed ID: 17997162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]