BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33482403)

  • 1. CRISPR/dCas9-mediated epigenetic modification reveals differential regulation of histone acetylation on Aspergillus niger secondary metabolite.
    Li X; Huang L; Pan L; Wang B; Pan L
    Microbiol Res; 2021 Apr; 245():126694. PubMed ID: 33482403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Histone Deacetylases HosA and HdaA Affect the Phenotype and Transcriptomic and Metabolic Profiles of
    Li X; Pan L; Wang B; Pan L
    Toxins (Basel); 2019 Sep; 11(9):. PubMed ID: 31500299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A
    Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating crosstalk between H3K27 acetylation and H3K4 trimethylation in CRISPR/dCas-based epigenome editing and gene activation.
    Zhao W; Xu Y; Wang Y; Gao D; King J; Xu Y; Liang FS
    Sci Rep; 2021 Aug; 11(1):15912. PubMed ID: 34354157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of the epigenetic regulator GcnE in Aspergillus niger FGSC A1279 activates the production of multiple polyketide metabolites.
    Wang B; Li X; Yu D; Chen X; Tabudravu J; Deng H; Pan L
    Microbiol Res; 2018 Dec; 217():101-107. PubMed ID: 30384904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [CRISPR/Cas-based genome editing in Aspergillus niger].
    Zheng X; Zheng P; Sun J
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):980-990. PubMed ID: 33783162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing.
    Goubert D; Koncz M; Kiss A; Rots MG
    Methods Mol Biol; 2018; 1767():395-415. PubMed ID: 29524148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical Inducible dCas9-Guided Editing of H3K27 Acetylation in Mammalian Cells.
    Gao D; Liang FS
    Methods Mol Biol; 2018; 1767():429-445. PubMed ID: 29524150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted Modification of Epigenetic Marks Using CRISPR/dCas9-SunTag-Based Modular Epigenetic Toolkit.
    Song MK; Kim YS
    Methods Mol Biol; 2024; 2761():81-91. PubMed ID: 38427231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenome editing based on CRISPR/dCas9
    Huang H; Zhang W; Zhang J; Zhao A; Jiang H
    Exp Cell Res; 2023 Apr; 425(2):113551. PubMed ID: 36914062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Mediated Synergistic Epigenetic and Transcriptional Control.
    Dominguez AA; Chavez MG; Urke A; Gao Y; Wang L; Qi LS
    CRISPR J; 2022 Apr; 5(2):264-275. PubMed ID: 35271371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances of epigenetic editing.
    Gjaltema RAF; Rots MG
    Curr Opin Chem Biol; 2020 Aug; 57():75-81. PubMed ID: 32619853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression.
    O'Geen H; Ren C; Nicolet CM; Perez AA; Halmai J; Le VM; Mackay JP; Farnham PJ; Segal DJ
    Nucleic Acids Res; 2017 Sep; 45(17):9901-9916. PubMed ID: 28973434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-dCas9 system for epigenetic editing towards therapeutic applications.
    Bhattacharjee G; Gohil N; Siruka D; Khambhati K; Maurya R; Ramakrishna S; Chu DT; Singh V
    Prog Mol Biol Transl Sci; 2023; 198():15-24. PubMed ID: 37225318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversing Mechanoinductive DSP Expression by CRISPR/dCas9-mediated Epigenome Editing.
    Qu J; Zhu L; Zhou Z; Chen P; Liu S; Locy ML; Thannickal VJ; Zhou Y
    Am J Respir Crit Care Med; 2018 Sep; 198(5):599-609. PubMed ID: 29924937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion.
    Huang L; Dong H; Zheng J; Wang B; Pan L
    Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemically Controlled Epigenome Editing through an Inducible dCas9 System.
    Chen T; Gao D; Zhang R; Zeng G; Yan H; Lim E; Liang FS
    J Am Chem Soc; 2017 Aug; 139(33):11337-11340. PubMed ID: 28787145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic editing by CRISPR/dCas9 in
    Xiao B; Yin S; Hu Y; Sun M; Wei J; Huang Z; Wen Y; Dai X; Chen H; Mu J; Cui L; Jiang L
    Proc Natl Acad Sci U S A; 2019 Jan; 116(1):255-260. PubMed ID: 30584102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmable human histone phosphorylation and gene activation using a CRISPR/Cas9-based chromatin kinase.
    Li J; Mahata B; Escobar M; Goell J; Wang K; Khemka P; Hilton IB
    Nat Commun; 2021 Feb; 12(1):896. PubMed ID: 33563994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted in vivo epigenome editing of H3K27me3.
    Fukushima HS; Takeda H; Nakamura R
    Epigenetics Chromatin; 2019 Mar; 12(1):17. PubMed ID: 30871638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.