These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 33482713)
1. SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks. Jarada TN; Rokne JG; Alhajj R BMC Bioinformatics; 2021 Jan; 22(1):28. PubMed ID: 33482713 [TBL] [Abstract][Full Text] [Related]
2. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Luo H; Wang J; Li M; Luo J; Peng X; Wu FX; Pan Y Bioinformatics; 2016 Sep; 32(17):2664-71. PubMed ID: 27153662 [TBL] [Abstract][Full Text] [Related]
3. Drug Repositioning by Integrating Known Disease-Gene and Drug-Target Associations in a Semi-supervised Learning Model. Le DH; Nguyen-Ngoc D Acta Biotheor; 2018 Dec; 66(4):315-331. PubMed ID: 29700660 [TBL] [Abstract][Full Text] [Related]
4. HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks. Zhao BW; Hu L; You ZH; Wang L; Su XR Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34891172 [TBL] [Abstract][Full Text] [Related]
5. BiRWDDA: A Novel Drug Repositioning Method Based on Multisimilarity Fusion. Yan CK; Wang WX; Zhang G; Wang JL; Patel A J Comput Biol; 2019 Nov; 26(11):1230-1242. PubMed ID: 31140857 [No Abstract] [Full Text] [Related]
6. In silico drug repositioning using deep learning and comprehensive similarity measures. Yi HC; You ZH; Wang L; Su XR; Zhou X; Jiang TH BMC Bioinformatics; 2021 Jun; 22(Suppl 3):293. PubMed ID: 34074242 [TBL] [Abstract][Full Text] [Related]
7. Drug Repositioning via Graph Neural Networks: Identifying Novel JAK2 Inhibitors from FDA-Approved Drugs through Molecular Docking and Biological Validation. Yasir M; Park J; Han ET; Park WS; Han JH; Chun W Molecules; 2024 Mar; 29(6):. PubMed ID: 38542998 [TBL] [Abstract][Full Text] [Related]
8. Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks. Liu H; Song Y; Guan J; Luo L; Zhuang Z BMC Bioinformatics; 2016 Dec; 17(Suppl 17):539. PubMed ID: 28155639 [TBL] [Abstract][Full Text] [Related]
9. Time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network. Mayers M; Li TS; Queralt-Rosinach N; Su AI BMC Bioinformatics; 2019 Dec; 20(1):653. PubMed ID: 31829175 [TBL] [Abstract][Full Text] [Related]
10. Predicting drug-disease associations via sigmoid kernel-based convolutional neural networks. Jiang HJ; You ZH; Huang YA J Transl Med; 2019 Nov; 17(1):382. PubMed ID: 31747915 [TBL] [Abstract][Full Text] [Related]
11. Drug repositioning of herbal compounds via a machine-learning approach. Kim E; Choi AS; Nam H BMC Bioinformatics; 2019 May; 20(Suppl 10):247. PubMed ID: 31138103 [TBL] [Abstract][Full Text] [Related]
12. A weighted bilinear neural collaborative filtering approach for drug repositioning. Meng Y; Lu C; Jin M; Xu J; Zeng X; Yang J Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039838 [TBL] [Abstract][Full Text] [Related]
13. Computational drug repositioning using meta-path-based semantic network analysis. Tian Z; Teng Z; Cheng S; Guo M BMC Syst Biol; 2018 Dec; 12(Suppl 9):134. PubMed ID: 30598084 [TBL] [Abstract][Full Text] [Related]
14. Drug-target interaction predictions with multi-view similarity network fusion strategy and deep interactive attention mechanism. Song W; Xu L; Han C; Tian Z; Zou Q Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38837345 [TBL] [Abstract][Full Text] [Related]
15. Computational drug repositioning using low-rank matrix approximation and randomized algorithms. Luo H; Li M; Wang S; Liu Q; Li Y; Wang J Bioinformatics; 2018 Jun; 34(11):1904-1912. PubMed ID: 29365057 [TBL] [Abstract][Full Text] [Related]
16. A geometric deep learning framework for drug repositioning over heterogeneous information networks. Zhao BW; Su XR; Hu PW; Ma YP; Zhou X; Hu L Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36125202 [TBL] [Abstract][Full Text] [Related]
17. HNet-DNN: Inferring New Drug-Disease Associations with Deep Neural Network Based on Heterogeneous Network Features. Liu H; Zhang W; Song Y; Deng L; Zhou S J Chem Inf Model; 2020 Apr; 60(4):2367-2376. PubMed ID: 32118415 [TBL] [Abstract][Full Text] [Related]
18. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Luo Y; Zhao X; Zhou J; Yang J; Zhang Y; Kuang W; Peng J; Chen L; Zeng J Nat Commun; 2017 Sep; 8(1):573. PubMed ID: 28924171 [TBL] [Abstract][Full Text] [Related]
19. deepDR: a network-based deep learning approach to in silico drug repositioning. Zeng X; Zhu S; Liu X; Zhou Y; Nussinov R; Cheng F Bioinformatics; 2019 Dec; 35(24):5191-5198. PubMed ID: 31116390 [TBL] [Abstract][Full Text] [Related]
20. Drug repositioning based on the heterogeneous information fusion graph convolutional network. Cai L; Lu C; Xu J; Meng Y; Wang P; Fu X; Zeng X; Su Y Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34378011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]