BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33482718)

  • 1. Mining influential genes based on deep learning.
    Kong L; Chen Y; Xu F; Xu M; Li Z; Fang J; Zhang L; Pian C
    BMC Bioinformatics; 2021 Jan; 22(1):27. PubMed ID: 33482718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. D-GPM: A Deep Learning Method for Gene Promoter Methylation Inference.
    Pan X; Liu B; Wen X; Liu Y; Zhang X; Li S; Li S
    Genes (Basel); 2019 Oct; 10(10):. PubMed ID: 31615113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming L1000 profiles to RNA-seq-like profiles with deep learning.
    Jeon M; Xie Z; Evangelista JE; Wojciechowicz ML; Clarke DJB; Ma'ayan A
    BMC Bioinformatics; 2022 Sep; 23(1):374. PubMed ID: 36100892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression inference with deep learning.
    Chen Y; Li Y; Narayan R; Subramanian A; Xie X
    Bioinformatics; 2016 Jun; 32(12):1832-9. PubMed ID: 26873929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Large-Scale Multitask Learning Network for Gene Expression Inference.
    Dizaji KG; Chen W; Huang H
    J Comput Biol; 2021 May; 28(5):485-500. PubMed ID: 34014778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditional generative adversarial network for gene expression inference.
    Wang X; Ghasedi Dizaji K; Huang H
    Bioinformatics; 2018 Sep; 34(17):i603-i611. PubMed ID: 30423066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of human circadian genes based on time course gene expression profiles by using a deep learning method.
    Cui P; Zhong T; Wang Z; Wang T; Zhao H; Liu C; Lu H
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2274-2283. PubMed ID: 29241666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representing high throughput expression profiles via perturbation barcodes reveals compound targets.
    Filzen TM; Kutchukian PS; Hermes JD; Li J; Tudor M
    PLoS Comput Biol; 2017 Feb; 13(2):e1005335. PubMed ID: 28182661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SWnet: a deep learning model for drug response prediction from cancer genomic signatures and compound chemical structures.
    Zuo Z; Wang P; Chen X; Tian L; Ge H; Qian D
    BMC Bioinformatics; 2021 Sep; 22(1):434. PubMed ID: 34507532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.
    Subramanian A; Narayan R; Corsello SM; Peck DD; Natoli TE; Lu X; Gould J; Davis JF; Tubelli AA; Asiedu JK; Lahr DL; Hirschman JE; Liu Z; Donahue M; Julian B; Khan M; Wadden D; Smith IC; Lam D; Liberzon A; Toder C; Bagul M; Orzechowski M; Enache OM; Piccioni F; Johnson SA; Lyons NJ; Berger AH; Shamji AF; Brooks AN; Vrcic A; Flynn C; Rosains J; Takeda DY; Hu R; Davison D; Lamb J; Ardlie K; Hogstrom L; Greenside P; Gray NS; Clemons PA; Silver S; Wu X; Zhao WN; Read-Button W; Wu X; Haggarty SJ; Ronco LV; Boehm JS; Schreiber SL; Doench JG; Bittker JA; Root DE; Wong B; Golub TR
    Cell; 2017 Nov; 171(6):1437-1452.e17. PubMed ID: 29195078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new LSTM-based gene expression prediction model: L-GEPM.
    Wang H; Li C; Zhang J; Wang J; Ma Y; Lian Y
    J Bioinform Comput Biol; 2019 Aug; 17(4):1950022. PubMed ID: 31617459
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Albaradei S; Albaradei A; Alsaedi A; Uludag M; Thafar MA; Gojobori T; Essack M; Gao X
    Front Mol Biosci; 2022; 9():913602. PubMed ID: 35936793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel deep learning-based transcriptome data analysis for drug-drug interaction prediction with an application in diabetes.
    Luo Q; Mo S; Xue Y; Zhang X; Gu Y; Wu L; Zhang J; Sun L; Liu M; Hu Y
    BMC Bioinformatics; 2021 Jun; 22(1):318. PubMed ID: 34116627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid gene selection approach to create the S1500+ targeted gene sets for use in high-throughput transcriptomics.
    Mav D; Shah RR; Howard BE; Auerbach SS; Bushel PR; Collins JB; Gerhold DL; Judson RS; Karmaus AL; Maull EA; Mendrick DL; Merrick BA; Sipes NS; Svoboda D; Paules RS
    PLoS One; 2018; 13(2):e0191105. PubMed ID: 29462216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning for plant genomics and crop improvement.
    Wang H; Cimen E; Singh N; Buckler E
    Curr Opin Plant Biol; 2020 Apr; 54():34-41. PubMed ID: 31986354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic association rules for gene expression data analysis.
    Chen SC; Tsai TH; Chung CH; Li WH
    BMC Genomics; 2015 Oct; 16():786. PubMed ID: 26467206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Qualitative Modeling Approach for Whole Genome Prediction Using High-Throughput Toxicogenomics Data and Pathway-Based Validation.
    Haider S; Black MB; Parks BB; Foley B; Wetmore BA; Andersen ME; Clewell RA; Mansouri K; McMullen PD
    Front Pharmacol; 2018; 9():1072. PubMed ID: 30333746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing.
    Zhao K; So HC
    Methods Mol Biol; 2019; 1903():219-237. PubMed ID: 30547445
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.