These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33482990)

  • 1. Design and construction of chimeric linker library with controllable flexibilities for precision protein engineering.
    Huang Z; Zhang C; Xing XH
    Methods Enzymol; 2021; 647():23-49. PubMed ID: 33482990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of a linker library with widely controllable flexibility for fusion protein design.
    Li G; Huang Z; Zhang C; Dong BJ; Guo RH; Yue HW; Yan LT; Xing XH
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):215-25. PubMed ID: 26394862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of helical linkers for fusion proteins and protein-based nanostructures.
    Arai R
    Methods Enzymol; 2021; 647():209-230. PubMed ID: 33482989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering.
    Arai R; Wriggers W; Nishikawa Y; Nagamune T; Fujisawa T
    Proteins; 2004 Dec; 57(4):829-38. PubMed ID: 15390267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on the effects of linker flexibility on acid phosphatase PhoC-GFP fusion protein using a novel linker library.
    Huang Z; Li G; Zhang C; Xing XH
    Enzyme Microb Technol; 2016 Feb; 83():1-6. PubMed ID: 26777244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linkers: A synergistic way for the synthesis of chimeric proteins.
    Patel DK; Menon DV; Patel DH; Dave G
    Protein Expr Purif; 2022 Mar; 191():106012. PubMed ID: 34767950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the Flexibility of Glycine-Serine Linkers To Allow Rational Design of Multidomain Proteins.
    van Rosmalen M; Krom M; Merkx M
    Biochemistry; 2017 Dec; 56(50):6565-6574. PubMed ID: 29168376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and characterization of structured protein linkers with differing flexibilities.
    Klein JS; Jiang S; Galimidi RP; Keeffe JR; Bjorkman PJ
    Protein Eng Des Sel; 2014 Oct; 27(10):325-30. PubMed ID: 25301959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Linker Length and Flexibility on the Clostridium thermocellum Esterase Displayed on Bacillus subtilis Spores.
    Chen H; Wu B; Zhang T; Jia J; Lu J; Chen Z; Ni Z; Tan T
    Appl Biochem Biotechnol; 2017 May; 182(1):168-180. PubMed ID: 27933482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of linker flexibility and length on the functionality of a cytotoxic engineered antibody fragment.
    Klement M; Liu C; Loo BL; Choo AB; Ow DS; Lee DY
    J Biotechnol; 2015 Apr; 199():90-7. PubMed ID: 25697559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding and applications of Ser/Gly linkers in protein engineering.
    Ceballos-Alcantarilla E; Merkx M
    Methods Enzymol; 2021; 647():1-22. PubMed ID: 33482985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of the linkers which effectively separate domains of a bifunctional fusion protein.
    Arai R; Ueda H; Kitayama A; Kamiya N; Nagamune T
    Protein Eng; 2001 Aug; 14(8):529-32. PubMed ID: 11579220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analysis of protein domain linkers: their classification and role in protein folding.
    George RA; Heringa J
    Protein Eng; 2002 Nov; 15(11):871-9. PubMed ID: 12538906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers.
    Evers TH; van Dongen EM; Faesen AC; Meijer EW; Merkx M
    Biochemistry; 2006 Nov; 45(44):13183-92. PubMed ID: 17073440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering FRET constructs using CFP and YFP.
    Shimozono S; Miyawaki A
    Methods Cell Biol; 2008; 85():381-93. PubMed ID: 18155471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategy for selecting and characterizing linker peptides for CBM9-tagged fusion proteins expressed in Escherichia coli.
    Kavoosi M; Creagh AL; Kilburn DG; Haynes CA
    Biotechnol Bioeng; 2007 Oct; 98(3):599-610. PubMed ID: 17394253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FPMOD: a modeling tool for sampling the conformational space of fusion proteins.
    Chiang J; Li I; Pham E; Truong K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4111-4. PubMed ID: 17945826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity.
    Sindbert S; Kalinin S; Nguyen H; Kienzler A; Clima L; Bannwarth W; Appel B; Müller S; Seidel CA
    J Am Chem Soc; 2011 Mar; 133(8):2463-80. PubMed ID: 21291253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing the homogeneity, stability and activity of human serum albumin and interferon-alpha2b fusion protein by linker engineering.
    Zhao HL; Yao XQ; Xue C; Wang Y; Xiong XH; Liu ZM
    Protein Expr Purif; 2008 Sep; 61(1):73-7. PubMed ID: 18541441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. protaTETHER: A method for the incorporation of linkers in biomacromolecules.
    Wurz AI; O'Bryant CT; Hughes RM
    Methods Enzymol; 2021; 647():83-106. PubMed ID: 33482995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.