These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 33482995)

  • 1. protaTETHER: A method for the incorporation of linkers in biomacromolecules.
    Wurz AI; O'Bryant CT; Hughes RM
    Methods Enzymol; 2021; 647():83-106. PubMed ID: 33482995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. protaTETHER - a method for the incorporation of variable linkers in protein fusions reveals impacts of linker flexibility in a PKAc-GFP fusion protein.
    Norris JL; Hughes RM
    FEBS Open Bio; 2018 Jun; 8(6):1029-1042. PubMed ID: 29928581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and construction of chimeric linker library with controllable flexibilities for precision protein engineering.
    Huang Z; Zhang C; Xing XH
    Methods Enzymol; 2021; 647():23-49. PubMed ID: 33482990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on the effects of linker flexibility on acid phosphatase PhoC-GFP fusion protein using a novel linker library.
    Huang Z; Li G; Zhang C; Xing XH
    Enzyme Microb Technol; 2016 Feb; 83():1-6. PubMed ID: 26777244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. P-LinK: A method for generating multicomponent cytochrome P450 fusions with variable linker length.
    Belsare KD; Ruff AJ; Martinez R; Shivange AV; Mundhada H; Holtmann D; Schrader J; Schwaneberg U
    Biotechniques; 2014 Jul; 57(1):13-20. PubMed ID: 25005689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of linker flexibility and length on the functionality of a cytotoxic engineered antibody fragment.
    Klement M; Liu C; Loo BL; Choo AB; Ow DS; Lee DY
    J Biotechnol; 2015 Apr; 199():90-7. PubMed ID: 25697559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Linker Length and Flexibility on the Clostridium thermocellum Esterase Displayed on Bacillus subtilis Spores.
    Chen H; Wu B; Zhang T; Jia J; Lu J; Chen Z; Ni Z; Tan T
    Appl Biochem Biotechnol; 2017 May; 182(1):168-180. PubMed ID: 27933482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategy for selecting and characterizing linker peptides for CBM9-tagged fusion proteins expressed in Escherichia coli.
    Kavoosi M; Creagh AL; Kilburn DG; Haynes CA
    Biotechnol Bioeng; 2007 Oct; 98(3):599-610. PubMed ID: 17394253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Library-Aided Probing of Linker Determinants in Hybrid Photoreceptors.
    Ohlendorf R; Schumacher CH; Richter F; Möglich A
    ACS Synth Biol; 2016 Oct; 5(10):1117-1126. PubMed ID: 27002379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing the stability of single-chain proteins by linker length and composition mutagenesis.
    Robinson CR; Sauer RT
    Proc Natl Acad Sci U S A; 1998 May; 95(11):5929-34. PubMed ID: 9600894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influences of Various Peptide Linkers on the Thermotoga maritima MSB8 Nitrilase Displayed on the Spore Surface of Bacillus subtilis.
    Chen H; Chen Z; Wu B; Ullah J; Zhang T; Jia J; Wang H; Tan T
    J Mol Microbiol Biotechnol; 2017; 27(1):64-71. PubMed ID: 28103592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing the homogeneity, stability and activity of human serum albumin and interferon-alpha2b fusion protein by linker engineering.
    Zhao HL; Yao XQ; Xue C; Wang Y; Xiong XH; Liu ZM
    Protein Expr Purif; 2008 Sep; 61(1):73-7. PubMed ID: 18541441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of helical linkers for fusion proteins and protein-based nanostructures.
    Arai R
    Methods Enzymol; 2021; 647():209-230. PubMed ID: 33482989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primer-Aided Truncation for the Creation of Hybrid Proteins.
    Stabel R; Stüven B; Ohlendorf R; Möglich A
    Methods Mol Biol; 2017; 1596():287-304. PubMed ID: 28293894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a linker library with widely controllable flexibility for fusion protein design.
    Li G; Huang Z; Zhang C; Dong BJ; Guo RH; Yue HW; Yan LT; Xing XH
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):215-25. PubMed ID: 26394862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding and applications of Ser/Gly linkers in protein engineering.
    Ceballos-Alcantarilla E; Merkx M
    Methods Enzymol; 2021; 647():1-22. PubMed ID: 33482985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of the linker in expression of single-chain Fv antibody fragments: optimisation of peptide sequence using phage display technology.
    Turner DJ; Ritter MA; George AJ
    J Immunol Methods; 1997 Jun; 205(1):43-54. PubMed ID: 9236914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iFLinkC-X: A Scalable Framework to Assemble Bespoke Genetically Encoded Co-polymeric Linkers of Variable Lengths and Amino Acid Composition.
    Gräwe A; Merkx M; Stein V
    Bioconjug Chem; 2022 Jul; 33(7):1415-1421. PubMed ID: 35815527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical distribution of truncation lengths in incremental truncation libraries.
    Ostermeier M
    Biotechnol Bioeng; 2003 Jun; 82(5):564-77. PubMed ID: 12652480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome-wide comparison between the amino acid composition of domains and linkers.
    Brüne D; Andrade-Navarro MA; Mier P
    BMC Res Notes; 2018 Feb; 11(1):117. PubMed ID: 29426365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.