These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Potential use of gamma-cyclodextrin polypseudorotaxane hydrogels as an injectable sustained release system for insulin. Abu Hashim II; Higashi T; Anno T; Motoyama K; Abd-ElGawad AE; El-Shabouri MH; Borg TM; Arima H Int J Pharm; 2010 Jun; 392(1-2):83-91. PubMed ID: 20298768 [TBL] [Abstract][Full Text] [Related]
5. Cyclodextrin/poly(ethylene glycol) polypseudorotaxane hydrogels as a promising sustained-release system for lysozyme. Higashi T; Tajima A; Motoyama K; Arima H J Pharm Sci; 2012 Aug; 101(8):2891-9. PubMed ID: 22678818 [TBL] [Abstract][Full Text] [Related]
6. Polypseudorotaxane formation of randomly-pegylated insulin with cyclodextrins: slow release and resistance to enzymatic degradation. Higashi T; Hirayama F; Misumi S; Motoyama K; Arima H; Uekama K Chem Pharm Bull (Tokyo); 2009 May; 57(5):541-4. PubMed ID: 19420793 [TBL] [Abstract][Full Text] [Related]
7. Antigen stabilizing hydrogels based on cyclodextrins and polyethylene glycol act as type-2 adjuvants with suppressed local irritation. Hayashi T; Nakagawa F; Ohno Y; Suzuki Y; Ishiki H; Onodera R; Higashi T; Shimamura Y; Itou H; Iwase Y; Arima H; Motoyama K Eur J Pharm Biopharm; 2022 Dec; 181():113-121. PubMed ID: 36372270 [TBL] [Abstract][Full Text] [Related]
8. Supramolecular Pharmaceutical Sciences: A Novel Concept Combining Pharmaceutical Sciences and Supramolecular Chemistry with a Focus on Cyclodextrin-Based Supermolecules. Higashi T; Iohara D; Motoyama K; Arima H Chem Pharm Bull (Tokyo); 2018; 66(3):207-216. PubMed ID: 29491254 [TBL] [Abstract][Full Text] [Related]
9. Polypseudorotaxanes of pegylated α-cyclodextrin/polyamidoamine dendrimer conjugate with cyclodextrins as a sustained release system for DNA. Motoyama K; Hayashida K; Higashi T; Arima H Bioorg Med Chem; 2012 Feb; 20(4):1425-33. PubMed ID: 22277591 [TBL] [Abstract][Full Text] [Related]
10. A Pseudopolyrotaxane for Glucose-Responsive Insulin Release: The Effect of Binding Ability and Spatial Arrangement of Phenylboronic Acid Group. Seki T; Abe K; Egawa Y; Miki R; Juni K; Seki T Mol Pharm; 2016 Nov; 13(11):3807-3815. PubMed ID: 27715064 [TBL] [Abstract][Full Text] [Related]
11. Preparation of polypseudorotaxanes composed of cyclodextrin and polymers in microspheres. Shinohara K; Yamashita M; Uchida W; Okabe C; Oshima S; Sugino M; Egawa Y; Miki R; Hosoya O; Fujihara T; Ishimaru Y; Kishino T; Seki T; Juni K Chem Pharm Bull (Tokyo); 2014; 62(10):962-6. PubMed ID: 25273055 [TBL] [Abstract][Full Text] [Related]
12. Branched polyrotaxane hydrogels consisting of alpha-cyclodextrin and low-molecular-weight four-arm polyethylene glycol and the utility of their thixotropic property for controlled drug release. Wang J; Williamson GS; Yang H Colloids Surf B Biointerfaces; 2018 May; 165():144-149. PubMed ID: 29476924 [TBL] [Abstract][Full Text] [Related]
13. Potential use of polypseudorotaxanes of pegylated polyamidoamine dendrimer with cyclodextrins as novel sustained release systems for DNA. Motoyama K; Hayashida K; Arima H Chem Pharm Bull (Tokyo); 2011; 59(4):476-9. PubMed ID: 21467677 [TBL] [Abstract][Full Text] [Related]
14. Polypseudorotaxane and polydopamine linkage-based hyaluronic acid hydrogel network with a single syringe injection for sustained drug delivery. Hwang C; Lee SY; Kim HJ; Lee K; Lee J; Kim DD; Cho HJ Carbohydr Polym; 2021 Aug; 266():118104. PubMed ID: 34044922 [TBL] [Abstract][Full Text] [Related]
16. Slow-release system of pegylated lysozyme utilizing formation of polypseudorotaxanes with cyclodextrins. Higashi T; Hirayama F; Yamashita S; Misumi S; Arima H; Uekama K Int J Pharm; 2009 Jun; 374(1-2):26-32. PubMed ID: 19446755 [TBL] [Abstract][Full Text] [Related]
17. Polypseudorotaxanes of pegylated insulin with cyclodextrins: application to sustained release system. Higashi T; Hirayama F; Arima H; Uekama K Bioorg Med Chem Lett; 2007 Apr; 17(7):1871-4. PubMed ID: 17291751 [TBL] [Abstract][Full Text] [Related]
18. Competitive displacement of drugs from cyclodextrin inclusion complex by polypseudorotaxane formation with poloxamer: implications in drug solubilization and delivery. Nogueiras-Nieto L; Sobarzo-Sánchez E; Gómez-Amoza JL; Otero-Espinar FJ Eur J Pharm Biopharm; 2012 Apr; 80(3):585-95. PubMed ID: 22182528 [TBL] [Abstract][Full Text] [Related]
19. Correlation of the hierarchical structure with rheological behavior of polypseudorotaxane gel composed of pluronic and β-cyclodextrin. Shih KC; Su CY; Chang SY; Jensen G; Hua CC; Nieh MP; Lai HM Soft Matter; 2020 Jun; 16(21):4990-4998. PubMed ID: 32436559 [TBL] [Abstract][Full Text] [Related]
20. Solvent-Free Formation of Cyclodextrin-Based Pseudopolyrotaxanes of Polyethylene Glycol: Kinetic and Structural Aspects. Guembe-Michel N; Durán A; Sirera R; González-Gaitano G Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]