These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33483014)

  • 1. Morphology, crystalline structure and digestibility of debranched starch nanoparticles varying in average degree of polymerization and fabrication methods.
    Duyen TTM; Van Hung P
    Carbohydr Polym; 2021 Mar; 256():117424. PubMed ID: 33483014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of tapioca starch nanoparticles by nanoprecipitation-sonication treatment.
    Hedayati S; Niakousari M; Mohsenpour Z
    Int J Biol Macromol; 2020 Jan; 143():136-142. PubMed ID: 31805331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of starch nanoparticles via self-assembly at moderate temperature.
    Liu C; Qin Y; Li X; Sun Q; Xiong L; Liu Z
    Int J Biol Macromol; 2016 Mar; 84():354-60. PubMed ID: 26708434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of microwave treatments and retrogradation on molecular crystalline structure and in vitro digestibility of debranched mung-bean starches.
    Huong NTM; Hoa PN; Van Hung P
    Int J Biol Macromol; 2021 Nov; 190():904-910. PubMed ID: 34534585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural transformation of crystallized debranched cassava starch during dual hydrothermal treatment in relation to enzyme digestibility.
    Boonna S; Tongta S
    Carbohydr Polym; 2018 Jul; 191():1-7. PubMed ID: 29661296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of resistant starch nanoparticles prepared via debranching and nanoprecipitation.
    Yan X; Diao M; Yu Y; Gao F; Wang E; Wang Z; Zhang T; Zhao P
    Food Chem; 2022 Feb; 369():130824. PubMed ID: 34438341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties.
    Wang X; Chen H; Luo Z; Fu X
    Carbohydr Polym; 2016 Mar; 138():192-200. PubMed ID: 26794752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of starch nanoparticles through ultrasonic-assisted oxidation methods.
    Sun Q; Fan H; Xiong L
    Carbohydr Polym; 2014 Jun; 106():359-64. PubMed ID: 24721090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of Pickering high internal phase emulsions stabilized by debranched starch-capric acid complex nanoparticles.
    Jia Y; Kong L; Zhang B; Fu X; Huang Q
    Int J Biol Macromol; 2022 May; 207():791-800. PubMed ID: 35346682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple ultrasound method to obtain starch micro- and nanoparticles from cassava, corn and yam starches.
    Minakawa AFK; Faria-Tischer PCS; Mali S
    Food Chem; 2019 Jun; 283():11-18. PubMed ID: 30722849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and digestibility of debranched and repeatedly crystallized waxy rice starch.
    Zeng F; Chen F; Kong F; Gao Q; Aadil RM; Yu S
    Food Chem; 2015 Nov; 187():348-53. PubMed ID: 25977036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of retrogradation time on preparation and characterization of proso millet starch nanoparticles.
    Sun Q; Gong M; Li Y; Xiong L
    Carbohydr Polym; 2014 Oct; 111():133-8. PubMed ID: 25037338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation.
    Sun Q; Li G; Dai L; Ji N; Xiong L
    Food Chem; 2014 Nov; 162():223-8. PubMed ID: 24874379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High efficiency and low cost preparation of size controlled starch nanoparticles through ultrasonic treatment and precipitation.
    Chang Y; Yan X; Wang Q; Ren L; Tong J; Zhou J
    Food Chem; 2017 Jul; 227():369-375. PubMed ID: 28274445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation, structure, and digestibility of crystalline A- and B-type aggregates from debranched waxy starches.
    Cai L; Shi YC
    Carbohydr Polym; 2014 May; 105():341-50. PubMed ID: 24708989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and physicochemical properties of lotus seed starch nanoparticles.
    Lin X; Sun S; Wang B; Zheng B; Guo Z
    Int J Biol Macromol; 2020 Aug; 157():240-246. PubMed ID: 32339589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of broken-rice starch nanoparticles with different sizes.
    Xiao H; Yang F; Lin Q; Zhang Q; Zhang L; Sun S; Han W; Liu GQ
    Int J Biol Macromol; 2020 Oct; 160():437-445. PubMed ID: 32473220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of conductive polypyrrole-palladium composite nanospheres by inverse microemulsion polymerization.
    Li L; Kang ET; Neoh KG
    J Nanosci Nanotechnol; 2006 Aug; 6(8):2571-5. PubMed ID: 17037874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and Characterization of Octenyl Succinic Anhydride Modified Taro Starch Nanoparticles.
    Jiang S; Dai L; Qin Y; Xiong L; Sun Q
    PLoS One; 2016; 11(2):e0150043. PubMed ID: 26918568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistant starch nanoparticles prepared from debranched starch by medium-temperature recrystallization.
    Miao T; Xiong K; Ji N; Xiong L; Sun C; Li X; Ma A; Sun Q
    Int J Biol Macromol; 2020 Jul; 155():598-604. PubMed ID: 32243930
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.