These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 3348341)

  • 1. Comparison of myoelectric and conventional prostheses for adolescent amputees.
    Weaver SA; Lange LR; Vogts VM
    Am J Occup Ther; 1988 Feb; 42(2):87-91. PubMed ID: 3348341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional comparison of upper extremity amputees using myoelectric and conventional prostheses.
    Stein RB; Walley M
    Arch Phys Med Rehabil; 1983 Jun; 64(6):243-8. PubMed ID: 6860093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion pattern analysis for evaluation and design of a prosthetic hook.
    Gilad I
    Arch Phys Med Rehabil; 1985 Jun; 66(6):399-402. PubMed ID: 4004541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prosthetic use in adult upper limb amputees: a comparison of the body powered and electrically powered prostheses.
    Millstein SG; Heger H; Hunter GA
    Prosthet Orthot Int; 1986 Apr; 10(1):27-34. PubMed ID: 3725563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consumer concerns and the functional value of prostheses to upper limb amputees.
    Kejlaa GH
    Prosthet Orthot Int; 1993 Dec; 17(3):157-63. PubMed ID: 8134275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A field evaluation of arm prostheses for unilateral amputees.
    van Lunteren A; van Lunteren-Gerritsen GH; Stassen HG; Zuithoff MJ
    Prosthet Orthot Int; 1983 Dec; 7(3):141-51. PubMed ID: 6647010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review.
    Carey SL; Lura DJ; Highsmith MJ; ;
    J Rehabil Res Dev; 2015; 52(3):247-62. PubMed ID: 26230500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of compensatory movements between body-powered and myoelectric prosthesis users during activities of daily living.
    Engdahl SM; Lee C; Gates DH
    Clin Biomech (Bristol, Avon); 2022 Jul; 97():105713. PubMed ID: 35809535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of environment: Experiences of users of myoelectric arm prosthesis-a qualitative study.
    Widehammar C; Pettersson I; Janeslätt G; Hermansson L
    Prosthet Orthot Int; 2018 Feb; 42(1):28-36. PubMed ID: 28470129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in quality of movements made with body-powered and myoelectric prostheses during activities of daily living.
    Engdahl SM; Gates DH
    Clin Biomech (Bristol, Avon); 2021 Apr; 84():105311. PubMed ID: 33812199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prosthesis use in adult acquired major upper-limb amputees: patterns of wear, prosthetic skills and the actual use of prostheses in activities of daily life.
    Østlie K; Lesjø IM; Franklin RJ; Garfelt B; Skjeldal OH; Magnus P
    Disabil Rehabil Assist Technol; 2012 Nov; 7(6):479-93. PubMed ID: 22315926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic comparison of myoelectric and body powered prostheses while performing common activities.
    Carey SL; Dubey RV; Bauer GS; Highsmith MJ
    Prosthet Orthot Int; 2009 Jun; 33(2):179-86. PubMed ID: 19367522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lightweight prostheses for bilateral below-elbow amputees.
    Rout SN
    Prosthet Orthot Int; 1993 Aug; 17(2):126-9. PubMed ID: 8233769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical application study of externally powered upper-limb prosthetics systems: the VA elbow, the VA hand, and the VA/NU myoelectric hand systems.
    Lewis EA; Sheredos CR; Sowell TT; Houston VL
    Bull Prosthet Res; 1975; (10-24):51-136. PubMed ID: 776301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional outcome of patients with proximal upper limb deficiency--acquired and congenital.
    Datta D; Selvarajah K; Davey N
    Clin Rehabil; 2004 Mar; 18(2):172-7. PubMed ID: 15053126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prosthetic usage in major upper extremity amputations.
    Wright TW; Hagen AD; Wood MB
    J Hand Surg Am; 1995 Jul; 20(4):619-22. PubMed ID: 7594289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applying Health Utility Outcome Measures and Quality-Adjusted Life-Years to Compare Hand Allotransplantation and Myoelectric Prostheses for Upper Extremity Amputations.
    Efanov JI; Izadpanah A; Bou-Merhi J; Lin SJ; Danino MA
    Plast Reconstr Surg; 2022 Mar; 149(3):465e-474e. PubMed ID: 35196684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically powered prostheses for the adult with an upper limb amputation.
    Heger H; Millstein S; Hunter GA
    J Bone Joint Surg Br; 1985 Mar; 67(2):278-81. PubMed ID: 3980541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional benefit of an adaptive myoelectric prosthetic hand compared to a conventional myoelectric hand.
    Bergman K; Ornholmer L; Zackrisson K; Thyberg M
    Prosthet Orthot Int; 1992 Apr; 16(1):32-7. PubMed ID: 1584641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.