BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 33483489)

  • 1. Three-dimensional total-internal reflection fluorescence nanoscopy with nanometric axial resolution by photometric localization of single molecules.
    Szalai AM; Siarry B; Lukin J; Williamson DJ; Unsain N; Cáceres A; Pilo-Pais M; Acuna G; Refojo D; Owen DM; Simoncelli S; Stefani FD
    Nat Commun; 2021 Jan; 12(1):517. PubMed ID: 33483489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. About samples, giving examples: Optimized Single Molecule Localization Microscopy.
    Jimenez A; Friedl K; Leterrier C
    Methods; 2020 Mar; 174():100-114. PubMed ID: 31078795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct-laser writing for subnanometer focusing and single-molecule imaging.
    Coelho S; Baek J; Walsh J; Justin Gooding J; Gaus K
    Nat Commun; 2022 Feb; 13(1):647. PubMed ID: 35115532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced 4Pi single-molecule localization microscopy with coherent pupil based localization.
    Liu S; Huang F
    Commun Biol; 2020 May; 3(1):220. PubMed ID: 32385402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene- and metal-induced energy transfer for single-molecule imaging and live-cell nanoscopy with (sub)-nanometer axial resolution.
    Ghosh A; Chizhik AI; Karedla N; Enderlein J
    Nat Protoc; 2021 Jul; 16(7):3695-3715. PubMed ID: 34099942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy.
    Huang B; Wang W; Bates M; Zhuang X
    Science; 2008 Feb; 319(5864):810-3. PubMed ID: 18174397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based spectroscopic single-molecule localization microscopy.
    Gaire SK; Daneshkhah A; Flowerday E; Gong R; Frederick J; Backman V
    J Biomed Opt; 2024 Jun; 29(6):066501. PubMed ID: 38799979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axial nanoscale localization by normalized total internal reflection fluorescence microscopy.
    Dos Santos MC; Déturche R; Vézy C; Jaffiol R
    Opt Lett; 2014 Feb; 39(4):869-72. PubMed ID: 24562228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular resolution imaging by repetitive optical selective exposure.
    Gu L; Li Y; Zhang S; Xue Y; Li W; Li D; Xu T; Ji W
    Nat Methods; 2019 Nov; 16(11):1114-1118. PubMed ID: 31501551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superresolution fluorescence microscopy for 3D reconstruction of thick samples.
    Park S; Kang W; Kwon YD; Shim J; Kim S; Kaang BK; Hohng S
    Mol Brain; 2018 Mar; 11(1):17. PubMed ID: 29544505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new wave of cellular imaging.
    Toomre D; Bewersdorf J
    Annu Rev Cell Dev Biol; 2010; 26():285-314. PubMed ID: 20929313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT.
    Schueder F; Lara-Gutiérrez J; Beliveau BJ; Saka SK; Sasaki HM; Woehrstein JB; Strauss MT; Grabmayr H; Yin P; Jungmann R
    Nat Commun; 2017 Dec; 8(1):2090. PubMed ID: 29233999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive Three-Dimensional Orientation Imaging of Single Molecules on Plasmonic Nanohole Arrays Using Second Harmonic Generation.
    Sahu SP; Mahigir A; Chidester B; Veronis G; Gartia MR
    Nano Lett; 2019 Sep; 19(9):6192-6202. PubMed ID: 31387355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying and optimizing single-molecule switching nanoscopy at high speeds.
    Lin Y; Long JJ; Huang F; Duim WC; Kirschbaum S; Zhang Y; Schroeder LK; Rebane AA; Velasco MG; Virrueta A; Moonan DW; Jiao J; Hernandez SY; Zhang Y; Bewersdorf J
    PLoS One; 2015; 10(5):e0128135. PubMed ID: 26011109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores.
    Aquino D; Schönle A; Geisler C; Middendorff CV; Wurm CA; Okamura Y; Lang T; Hell SW; Egner A
    Nat Methods; 2011 Apr; 8(4):353-9. PubMed ID: 21399636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlative 3D Structured Illumination Microscopy and Single-Molecule Localization Microscopy for Imaging Cancer Invasion.
    Pinnington SJL; Marshall JF; Wheeler AP
    Methods Mol Biol; 2018; 1764():253-265. PubMed ID: 29605919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional nanoscopy of whole cells and tissues with in situ point spread function retrieval.
    Xu F; Ma D; MacPherson KP; Liu S; Bu Y; Wang Y; Tang Y; Bi C; Kwok T; Chubykin AA; Yin P; Calve S; Landreth GE; Huang F
    Nat Methods; 2020 May; 17(5):531-540. PubMed ID: 32371980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-content super-resolution imaging of live cell by uPAINT.
    Giannone G; Hosy E; Sibarita JB; Choquet D; Cognet L
    Methods Mol Biol; 2013; 950():95-110. PubMed ID: 23086872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3-D reconstruction of microtubules from multi-angle total internal reflection fluorescence microscopy using Bayesian framework.
    Yang Q; Karpikov A; Toomre D; Duncan JS
    IEEE Trans Image Process; 2011 Aug; 20(8):2248-59. PubMed ID: 21324778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracting microtubule networks from superresolution single-molecule localization microscopy data.
    Zhang Z; Nishimura Y; Kanchanawong P
    Mol Biol Cell; 2017 Jan; 28(2):333-345. PubMed ID: 27852898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.