BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33483495)

  • 1. High-resolution targeted 3C interrogation of cis-regulatory element organization at genome-wide scale.
    Downes DJ; Beagrie RA; Gosden ME; Telenius J; Carpenter SJ; Nussbaum L; De Ornellas S; Sergeant M; Eijsbouts CQ; Schwessinger R; Kerry J; Roberts N; Shivalingam A; El-Sagheer A; Oudelaar AM; Brown T; Buckle VJ; Davies JOJ; Hughes JR
    Nat Commun; 2021 Jan; 12(1):531. PubMed ID: 33483495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome Conformation Capture (3C and Higher) with Erythroid Samples.
    Krivega I; Dean A
    Methods Mol Biol; 2018; 1698():237-243. PubMed ID: 29076094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting Spatial Chromatin Organization by Chromosome Conformation Capture II: Genome-Wide Profiling by Hi-C.
    Vietri Rudan M; Hadjur S; Sexton T
    Methods Mol Biol; 2017; 1589():47-74. PubMed ID: 26900130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Hi-C for Plants: An Improved Method to Detect Long-Range Chromatin Interactions.
    Padmarasu S; Himmelbach A; Mascher M; Stein N
    Methods Mol Biol; 2019; 1933():441-472. PubMed ID: 30945203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iHi-C 2.0: A simple approach for mapping native spatial chromatin organisation from low cell numbers.
    Mizi A; Gade Gusmao E; Papantonis A
    Methods; 2020 Jan; 170():33-37. PubMed ID: 31283985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafine mapping of chromosome conformation at hundred basepair resolution reveals regulatory genome architecture.
    Zhu Y; Rosenfeld MG; Suh Y
    Proc Natl Acad Sci U S A; 2023 Nov; 120(45):e2313285120. PubMed ID: 37922325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the spatial structure and interactions of the genome at sub-kilobase-pair resolution using T2C.
    Kolovos P; Brouwer RWW; Kockx CEM; Lesnussa M; Kepper N; Zuin J; Imam AMA; van de Werken HJG; Wendt KS; Knoch TA; van IJcken WFJ; Grosveld F
    Nat Protoc; 2018 Mar; 13(3):459-477. PubMed ID: 29419817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining spatial chromatin organization of large genomic regions using 5C technology.
    van Berkum NL; Dekker J
    Methods Mol Biol; 2009; 567():189-213. PubMed ID: 19588094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic approaches for the discovery of CFTR regulatory elements.
    Ott CJ; Harris A
    Transcription; 2011; 2(1):23-7. PubMed ID: 21326906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 5C-ID: Increased resolution Chromosome-Conformation-Capture-Carbon-Copy with in situ 3C and double alternating primer design.
    Kim JH; Titus KR; Gong W; Beagan JA; Cao Z; Phillips-Cremins JE
    Methods; 2018 Jun; 142():39-46. PubMed ID: 29772275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining chromatin architecture with Micro Capture-C.
    Hamley JC; Li H; Denny N; Downes D; Davies JOJ
    Nat Protoc; 2023 Jun; 18(6):1687-1711. PubMed ID: 36991220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosome Conformation Capture in Primary Human Cells.
    Cortesi A; Bodega B
    Methods Mol Biol; 2016; 1480():213-21. PubMed ID: 27659988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions.
    Stadhouders R; Kolovos P; Brouwer R; Zuin J; van den Heuvel A; Kockx C; Palstra RJ; Wendt KS; Grosveld F; van Ijcken W; Soler E
    Nat Protoc; 2013 Mar; 8(3):509-24. PubMed ID: 23411633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A (3D-Nuclear) Space Odyssey: Making Sense of Hi-C Maps.
    Mota-Gómez I; Lupiáñez DG
    Genes (Basel); 2019 May; 10(6):. PubMed ID: 31146487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.
    Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z
    Methods; 2018 Jun; 142():59-73. PubMed ID: 29382556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unravelling global genome organization by 3C-seq.
    Tanizawa H; Noma K
    Semin Cell Dev Biol; 2012 Apr; 23(2):213-21. PubMed ID: 22120510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution genetic mapping of putative causal interactions between regions of open chromatin.
    Kumasaka N; Knights AJ; Gaffney DJ
    Nat Genet; 2019 Jan; 51(1):128-137. PubMed ID: 30478436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tethered Chromosome Conformation Capture Sequencing in Triticeae: A Valuable Tool for Genome Assembly.
    Himmelbach A; Walde I; Mascher M; Stein N
    Bio Protoc; 2018 Aug; 8(15):e2955. PubMed ID: 34395764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristic arrangement of nucleosomes is predictive of chromatin interactions at kilobase resolution.
    Zhang H; Li F; Jia Y; Xu B; Zhang Y; Li X; Zhang Z
    Nucleic Acids Res; 2017 Dec; 45(22):12739-12751. PubMed ID: 29036650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of 3D Interactions Between Promoters and Distal Regulatory Elements with Promoter Capture Hi-C (PCHi-C).
    Karasu N; Sexton T
    Methods Mol Biol; 2021; 2351():229-248. PubMed ID: 34382193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.