These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 33483547)
1. Data science assisted investigation of catalytically active copper hydrate in zeolites for direct oxidation of methane to methanol using H Ohyama J; Hirayama A; Kondou N; Yoshida H; Machida M; Nishimura S; Hirai K; Miyazato I; Takahashi K Sci Rep; 2021 Jan; 11(1):2067. PubMed ID: 33483547 [TBL] [Abstract][Full Text] [Related]
2. Competition between Mononuclear and Binuclear Copper Sites across Different Zeolite Topologies. Wijerathne A; Sawyer A; Daya R; Paolucci C JACS Au; 2024 Jan; 4(1):197-215. PubMed ID: 38274255 [TBL] [Abstract][Full Text] [Related]
3. Structure of copper sites in zeolites examined by Fourier and wavelet transform analysis of EXAFS. Sushkevich VL; Safonova OV; Palagin D; Newton MA; van Bokhoven JA Chem Sci; 2020 May; 11(20):5299-5312. PubMed ID: 34122988 [TBL] [Abstract][Full Text] [Related]
4. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts. Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444 [TBL] [Abstract][Full Text] [Related]
5. Atomic Insights into the Cu Species Supported on Zeolite for Direct Oxidation of Methane to Methanol via Low-Damage HAADF-STEM. Tang X; Ye J; Guo L; Pu T; Cheng L; Cao XM; Guo Y; Wang L; Guo Y; Zhan W; Dai S Adv Mater; 2023 Jun; 35(25):e2208504. PubMed ID: 37014632 [TBL] [Abstract][Full Text] [Related]
6. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides. Paolucci C; Di Iorio JR; Schneider WF; Gounder R Acc Chem Res; 2020 Sep; 53(9):1881-1892. PubMed ID: 32786332 [TBL] [Abstract][Full Text] [Related]
7. Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites. Dinh KT; Sullivan MM; Narsimhan K; Serna P; Meyer RJ; Dincă M; Román-Leshkov Y J Am Chem Soc; 2019 Jul; 141(29):11641-11650. PubMed ID: 31306002 [TBL] [Abstract][Full Text] [Related]
8. Spectroscopic and XRD characterisation of zeolite catalysts active for the oxidative methylation of benzene with methane. Adebajo MO; Long MA; Frost RL Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):791-9. PubMed ID: 15036089 [TBL] [Abstract][Full Text] [Related]
9. Removal of free fatty acid in waste frying oil by esterification with methanol on zeolite catalysts. Chung KH; Chang DR; Park BG Bioresour Technol; 2008 Nov; 99(16):7438-43. PubMed ID: 18387298 [TBL] [Abstract][Full Text] [Related]
10. Redox-Driven Migration of Copper Ions in the Cu-CHA Zeolite as Shown by the In Situ PXRD/XANES Technique. Andersen CW; Borfecchia E; Bremholm M; Jørgensen MRV; Vennestrøm PNR; Lamberti C; Lundegaard LF; Iversen BB Angew Chem Int Ed Engl; 2017 Aug; 56(35):10367-10372. PubMed ID: 28670829 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation. Vanelderen P; Snyder BE; Tsai ML; Hadt RG; Vancauwenbergh J; Coussens O; Schoonheydt RA; Sels BF; Solomon EI J Am Chem Soc; 2015 May; 137(19):6383-92. PubMed ID: 25914019 [TBL] [Abstract][Full Text] [Related]
12. EXAFS wavelet transform analysis of Cu-MOR zeolites for the direct methane to methanol conversion. Martini A; Signorile M; Negri C; Kvande K; Lomachenko KA; Svelle S; Beato P; Berlier G; Borfecchia E; Bordiga S Phys Chem Chem Phys; 2020 Sep; 22(34):18950-18963. PubMed ID: 32578608 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic Investigation of the Role of Water in Copper Zeolite Methane Oxidation. Heyer AJ; Ma J; Plessers D; Braun A; Bols ML; Rhoda HM; Schoonheydt RA; Sels BF; Solomon EI J Am Chem Soc; 2024 Aug; 146(31):21208-21213. PubMed ID: 39046226 [TBL] [Abstract][Full Text] [Related]
14. Activity of Cu-Al-Oxo Extra-Framework Clusters for Selective Methane Oxidation on Cu-Exchanged Zeolites. Lee I; Lee MS; Tao L; Ikuno T; Khare R; Jentys A; Huthwelker T; Borca CN; Kalinko A; Gutiérrez OY; Govind N; Fulton JL; Hu JZ; Glezakou VA; Rousseau R; Sanchez-Sanchez M; Lercher JA JACS Au; 2021 Sep; 1(9):1412-1421. PubMed ID: 34604851 [TBL] [Abstract][Full Text] [Related]
15. Theoretical Investigation of Methane Hydroxylation over Isoelectronic [FeO] Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K Inorg Chem; 2017 Sep; 56(17):10370-10380. PubMed ID: 28809113 [TBL] [Abstract][Full Text] [Related]
16. The local environment of Cu+ in Cu-Y zeolite and its relationship to the synthesis of dimethyl carbonate. Drake IJ; Zhang Y; Briggs D; Lim B; Chau T; Bell AT J Phys Chem B; 2006 Jun; 110(24):11654-64. PubMed ID: 16800460 [TBL] [Abstract][Full Text] [Related]
17. State of the Art and Perspectives of Hierarchical Zeolites: Practical Overview of Synthesis Methods and Use in Catalysis. Kerstens D; Smeyers B; Van Waeyenberg J; Zhang Q; Yu J; Sels BF Adv Mater; 2020 Nov; 32(44):e2004690. PubMed ID: 32969083 [TBL] [Abstract][Full Text] [Related]
18. The leading role of association in framework modification of highly siliceous zeolites with adsorbed methylamine. Han AJ; Guo J; Yu H; Zeng Y; Huang YF; He HY; Long YC Chemphyschem; 2006 Mar; 7(3):607-13. PubMed ID: 16456902 [TBL] [Abstract][Full Text] [Related]
19. Effects of single and double active sites of Cu oxide clusters over the MFI zeolite for direct conversion of methane to methanol: DFT calculations. Nunthakitgoson W; Thivasasith A; Maihom T; Wattanakit C Phys Chem Chem Phys; 2021 Jan; 23(3):2500-2510. PubMed ID: 33465219 [TBL] [Abstract][Full Text] [Related]
20. Recent Insights into Cu-Based Catalytic Sites for the Direct Conversion of Methane to Methanol. Mao M; Liu L; Liu Z Molecules; 2022 Oct; 27(21):. PubMed ID: 36363972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]