BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33483595)

  • 1. Author Correction: A calcium signalling network activates vacuolar K
    Tang RJ; Zhao FG; Yang Y; Wang C; Li K; Kleist TJ; Lemaux PG; Luan S
    Nat Plants; 2021 Feb; 7(2):236. PubMed ID: 33483595
    [No Abstract]   [Full Text] [Related]  

  • 2. Author Correction: A calcium signalling network activates vacuolar K
    Tang RJ; Zhao FG; Yang Y; Wang C; Li K; Kleist TJ; Lemaux PG; Luan S
    Nat Plants; 2020 Jun; 6(6):718. PubMed ID: 32427960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms involved in plant adaptation to low K(+) availability.
    Chérel I; Lefoulon C; Boeglin M; Sentenac H
    J Exp Bot; 2014 Mar; 65(3):833-48. PubMed ID: 24293613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-Activated K+ Channels and Calcium-Induced Calcium Release by Slow Vacuolar Ion Channels in Guard Cell Vacuoles Implicated in the Control of Stomatal Closure.
    Ward JM; Schroeder JI
    Plant Cell; 1994 May; 6(5):669-683. PubMed ID: 12244253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal transduction and ion channels in guard cells.
    MacRobbie EA
    Philos Trans R Soc Lond B Biol Sci; 1998 Sep; 353(1374):1475-88. PubMed ID: 9800209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The plant vacuole: emitter and receiver of calcium signals.
    Peiter E
    Cell Calcium; 2011 Aug; 50(2):120-8. PubMed ID: 21376393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wheat stem reserves and salinity tolerance: molecular dissection of fructan biosynthesis and remobilization to grains.
    Sharbatkhari M; Shobbar ZS; Galeshi S; Nakhoda B
    Planta; 2016 Jul; 244(1):191-202. PubMed ID: 27016249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. K+ currents through SV-type vacuolar channels are sensitive to elevated luminal sodium levels.
    Ivashikina N; Hedrich R
    Plant J; 2005 Feb; 41(4):606-14. PubMed ID: 15686523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape.
    Poret M; Chandrasekar B; van der Hoorn RAL; Avice JC
    Plant Sci; 2016 May; 246():139-153. PubMed ID: 26993244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses.
    Ranf S; Wünnenberg P; Lee J; Becker D; Dunkel M; Hedrich R; Scheel D; Dietrich P
    Plant J; 2008 Jan; 53(2):287-99. PubMed ID: 18028262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-trisphosphate.
    Blatt MR; Thiel G; Trentham DR
    Nature; 1990 Aug; 346(6286):766-9. PubMed ID: 2388696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium.
    Allen GJ; Sanders D
    Plant J; 1996 Dec; 10(6):1055-69. PubMed ID: 9011087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macronutrient Management Effects on Nutrient Accumulation, Partitioning, Remobilization, and Yield of Hybrid Maize Cultivars.
    Ray K; Banerjee H; Dutta S; Sarkar S; Murrell TS; Singh VK; Majumdar K
    Front Plant Sci; 2020; 11():1307. PubMed ID: 32983197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A profiling approach of the natural variability of foliar N remobilization at the rosette stage gives clues to understand the limiting processes involved in the low N use efficiency of winter oilseed rape.
    Girondé A; Poret M; Etienne P; Trouverie J; Bouchereau A; Le Cahérec F; Leport L; Orsel M; Niogret MF; Deleu C; Avice JC
    J Exp Bot; 2015 May; 66(9):2461-73. PubMed ID: 25792758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the fast vacuolar channel by cytosolic and vacuolar potassium.
    Pottosin II; Martínez-Estévez M
    Biophys J; 2003 Feb; 84(2 Pt 1):977-86. PubMed ID: 12547779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the slow vacuolar channel by luminal potassium: role of surface charge.
    Pottosin II; Martínez-Estévez M; Dobrovinskaya OR; Muñiz J
    J Membr Biol; 2005 May; 205(2):103-11. PubMed ID: 16283590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf habit influences nitrogen remobilization in Vaccinium species.
    Grelet GA; Alexander IJ; Proe MF; Frossard JS; Millard P
    J Exp Bot; 2001 May; 52(358):993-1002. PubMed ID: 11432916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vacuolar calcium channels.
    Pottosin II; Schönknecht G
    J Exp Bot; 2007; 58(7):1559-69. PubMed ID: 17355948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fou2 mutation in the major vacuolar cation channel TPC1 confers tolerance to inhibitory luminal calcium.
    Beyhl D; Hörtensteiner S; Martinoia E; Farmer EE; Fromm J; Marten I; Hedrich R
    Plant J; 2009 Jun; 58(5):715-23. PubMed ID: 19298454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention and remobilization mechanisms of environmentally aged silver nanoparticles in an artificial riverbank filtration system.
    Degenkolb L; Metreveli G; Philippe A; Brandt A; Leopold K; Zehlike L; Vogel HJ; Schaumann GE; Baumann T; Kaupenjohann M; Lang F; Kumahor S; Klitzke S
    Sci Total Environ; 2018 Dec; 645():192-204. PubMed ID: 30021176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.