BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33483615)

  • 1. T-ALL can evolve to oncogene independence.
    Abdulla H; Vo A; Shields BJ; Davies TJ; Jackson JT; Alserihi R; Viney EM; Wong T; Yan F; Wong NC; Demoen L; Curtis DJ; Alexander WS; Van Vlierberghe P; Dickins RA; McCormack MP
    Leukemia; 2021 Aug; 35(8):2205-2219. PubMed ID: 33483615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The NUP98-HOXD13 fusion oncogene induces thymocyte self-renewal via Lmo2/Lyl1.
    Shields BJ; Slape CI; Vo N; Jackson JT; Pliego-Zamora A; Ranasinghe H; Shi W; Curtis DJ; McCormack MP
    Leukemia; 2019 Aug; 33(8):1868-1880. PubMed ID: 30700838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal.
    McCormack MP; Young LF; Vasudevan S; de Graaf CA; Codrington R; Rabbitts TH; Jane SM; Curtis DJ
    Science; 2010 Feb; 327(5967):879-83. PubMed ID: 20093438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hhex regulates Kit to promote radioresistance of self-renewing thymocytes in Lmo2-transgenic mice.
    Shields BJ; Alserihi R; Nasa C; Bogue C; Alexander WS; McCormack MP
    Leukemia; 2015 Apr; 29(4):927-38. PubMed ID: 25283843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ldb1 is required for Lmo2 oncogene-induced thymocyte self-renewal and T-cell acute lymphoblastic leukemia.
    Li L; Mitra A; Cui K; Zhao B; Choi S; Lee JY; Stamos DB; El-Khoury D; Warzecha C; Pfeifer K; Hardwick J; Zhao K; Venters B; Davé UP; Love PE
    Blood; 2020 Jun; 135(25):2252-2265. PubMed ID: 32181817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirement for Lyl1 in a model of Lmo2-driven early T-cell precursor ALL.
    McCormack MP; Shields BJ; Jackson JT; Nasa C; Shi W; Slater NJ; Tremblay CS; Rabbitts TH; Curtis DJ
    Blood; 2013 Sep; 122(12):2093-103. PubMed ID: 23926305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LIM domain only-2 (LMO2) induces T-cell leukemia by two distinct pathways.
    Smith S; Tripathi R; Goodings C; Cleveland S; Mathias E; Hardaway JA; Elliott N; Yi Y; Chen X; Downing J; Mullighan C; Swing DA; Tessarollo L; Li L; Love P; Jenkins NA; Copeland NG; Thompson MA; Du Y; Davé UP
    PLoS One; 2014; 9(1):e85883. PubMed ID: 24465765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Notch1 inhibition targets the leukemia-initiating cells in a Tal1/Lmo2 mouse model of T-ALL.
    Tatarek J; Cullion K; Ashworth T; Gerstein R; Aster JC; Kelliher MA
    Blood; 2011 Aug; 118(6):1579-90. PubMed ID: 21670468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FOXP3 can modulate TAL1 transcriptional activity through interaction with LMO2.
    Fleskens V; Mokry M; van der Leun AM; Huppelschoten S; Pals CE; Peeters J; Coenen S; Cardoso BA; Barata JT; van Loosdregt J; Coffer PJ
    Oncogene; 2016 Aug; 35(31):4141-8. PubMed ID: 26686090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZEB2 and LMO2 drive immature T-cell lymphoblastic leukemia via distinct oncogenic mechanisms.
    Goossens S; Wang J; Tremblay CS; De Medts J; T'Sas S; Nguyen T; Saw J; Haigh K; Curtis DJ; Van Vlierberghe P; Berx G; Taghon T; Haigh JJ
    Haematologica; 2019 Aug; 104(8):1608-1616. PubMed ID: 30679322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of Lhx2 suppresses proliferation of human T cell acute lymphoblastic leukemia-derived cells, partly by reducing LMO2 protein levels.
    Miyashita K; Kitajima K; Goyama S; Kitamura T; Hara T
    Biochem Biophys Res Commun; 2018 Jan; 495(3):2310-2316. PubMed ID: 29278703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of the
    Rahman S; Magnussen M; León TE; Farah N; Li Z; Abraham BJ; Alapi KZ; Mitchell RJ; Naughton T; Fielding AK; Pizzey A; Bustraan S; Allen C; Popa T; Pike-Overzet K; Garcia-Perez L; Gale RE; Linch DC; Staal FJT; Young RA; Look AT; Mansour MR
    Blood; 2017 Jun; 129(24):3221-3226. PubMed ID: 28270453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ERG promotes T-acute lymphoblastic leukemia and is transcriptionally regulated in leukemic cells by a stem cell enhancer.
    Thoms JA; Birger Y; Foster S; Knezevic K; Kirschenbaum Y; Chandrakanthan V; Jonquieres G; Spensberger D; Wong JW; Oram SH; Kinston SJ; Groner Y; Lock R; MacKenzie KL; Göttgens B; Izraeli S; Pimanda JE
    Blood; 2011 Jun; 117(26):7079-89. PubMed ID: 21536859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional interactions between Lmo2, the Arf tumor suppressor, and Notch1 in murine T-cell malignancies.
    Treanor LM; Volanakis EJ; Zhou S; Lu T; Sherr CJ; Sorrentino BP
    Blood; 2011 May; 117(20):5453-62. PubMed ID: 21427293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of Lmo2 initiates T-lymphoblastic leukemia via impaired thymocyte competition.
    Abdulla HD; Alserihi R; Flensburg C; Abeysekera W; Luo MX; Gray DHD; Liu X; Smyth GK; Alexander WS; Majewski IJ; McCormack MP
    J Exp Med; 2023 Jun; 220(6):. PubMed ID: 36920307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic dysregulation of ZEB1 is involved in LMO2-promoted T-cell acute lymphoblastic leukaemia leukaemogenesis.
    Wu C; Li J; Tian C; Shi W; Jiang H; Zhang Z; Wang H; Zhang Q; Sun W; Sun P; Xiang R; Yang S
    Biochim Biophys Acta Mol Basis Dis; 2018 Aug; 1864(8):2511-2525. PubMed ID: 29778661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a pediatric T-cell acute lymphoblastic leukemia patient with simultaneous LYL1 and LMO2 rearrangements.
    Homminga I; Vuerhard MJ; Langerak AW; Buijs-Gladdines J; Pieters R; Meijerink JP
    Haematologica; 2012 Feb; 97(2):258-61. PubMed ID: 22058201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NKX3.1 is a direct TAL1 target gene that mediates proliferation of TAL1-expressing human T cell acute lymphoblastic leukemia.
    Kusy S; Gerby B; Goardon N; Gault N; Ferri F; Gérard D; Armstrong F; Ballerini P; Cayuela JM; Baruchel A; Pflumio F; Roméo PH
    J Exp Med; 2010 Sep; 207(10):2141-56. PubMed ID: 20855495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LMO2 activation by deacetylation is indispensable for hematopoiesis and T-ALL leukemogenesis.
    Morishima T; Krahl AC; Nasri M; Xu Y; Aghaallaei N; Findik B; Klimiankou M; Ritter M; Hartmann MD; Gloeckner CJ; Stefanczyk S; Lindner C; Oswald B; Bernhard R; Hähnel K; Hermanutz-Klein U; Ebinger M; Handgretinger R; Casadei N; Welte K; Andre M; Müller P; Bajoghli B; Skokowa J
    Blood; 2019 Oct; 134(14):1159-1175. PubMed ID: 31366618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of quiescent thymic progenitors in TAL/LMO2-induced T-ALL chemotolerance.
    O'Connor KW; Kishimoto K; Kuzma IO; Wagner KP; Selway JS; Roderick JE; Karna KK; Gallagher KM; Hu K; Liu H; Li R; Brehm MA; Zhu LJ; Curtis DJ; Tremblay CS; Kelliher MA
    Leukemia; 2024 May; 38(5):951-962. PubMed ID: 38553571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.