BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3348410)

  • 1. Modulation of cell nucleotide levels of isolated kidney tubules.
    Weinberg JM; Davis JA; Lawton A; Abarzua M
    Am J Physiol; 1988 Mar; 254(3 Pt 2):F311-22. PubMed ID: 3348410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increases of cell ATP produced by exogenous adenine nucleotides in isolated rabbit kidney tubules.
    Weinberg JM; Humes HD
    Am J Physiol; 1986 Apr; 250(4 Pt 2):F720-33. PubMed ID: 3963208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual cardiac microdialysis to assess drug-induced changes in interstitial purine metabolites: adenosine deaminase inhibition versus adenosine kinase inhibition.
    Manthei SA; Reiling CM; Van Wylen DG
    Cardiovasc Res; 1998 Jan; 37(1):171-8. PubMed ID: 9539871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms whereby exogenous adenine nucleotides improve rabbit renal proximal function during and after anoxia.
    Mandel LJ; Takano T; Soltoff SP; Murdaugh S
    J Clin Invest; 1988 Apr; 81(4):1255-64. PubMed ID: 3350972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenine/ribose supply increases adenosine production and protects ATP pool in adenosine kinase-inhibited cardiac cells.
    Smolenski RT; Kalsi KK; Zych M; Kochan Z; Yacoub MH
    J Mol Cell Cardiol; 1998 Mar; 30(3):673-83. PubMed ID: 9515042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathways of purine metabolism in human adipocytes. Further evidence against a role of adenosine as an endogenous regulator of human fat cell function.
    Kather H
    J Biol Chem; 1990 Jan; 265(1):96-102. PubMed ID: 2294125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences between rat primary cortical neurons and astrocytes in purine release evoked by ischemic conditions.
    Parkinson FE; Sinclair CJ; Othman T; Haughey NJ; Geiger JD
    Neuropharmacology; 2002 Oct; 43(5):836-46. PubMed ID: 12384169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of renal gluconeogenesis by exogenous adenine nucleotides.
    Saggerson ED; Carpenter CA; Veiga JA
    Biochim Biophys Acta; 1983 Jan; 755(1):119-26. PubMed ID: 6297608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of adenosine and adenine nucleotides on the atrioventricular node of isolated guinea pig hearts.
    Belardinelli L; Shryock J; West GA; Clemo HF; DiMarco JP; Berne RM
    Circulation; 1984 Dec; 70(6):1083-91. PubMed ID: 6499145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increases in interstitial adenosine and cerebral blood flow with inhibition of adenosine kinase and adenosine deaminase.
    Sciotti VM; Van Wylen DG
    J Cereb Blood Flow Metab; 1993 Mar; 13(2):201-7. PubMed ID: 8436611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purinergic regulation of glucose and glutamine synthesis in isolated rabbit kidney-cortex tubules.
    Jagielski AK; Wohner D; Lietz T; Jarzyna R; Derlacz RA; Winiarska K; Bryła J
    Arch Biochem Biophys; 2002 Aug; 404(2):186-96. PubMed ID: 12147256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme-coupled assays for simultaneous detection of nanomolar ATP, ADP, AMP, adenosine, inosine and pyrophosphate concentrations in extracellular fluids.
    Helenius M; Jalkanen S; Yegutkin G
    Biochim Biophys Acta; 2012 Oct; 1823(10):1967-75. PubMed ID: 22967714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in nucleotide pools induced by 3-deazaadenosine and related compounds. Role of adenylate deaminase.
    Bennett LL; Brockman RW; Allan PW; Rose LM; Shaddix SC
    Biochem Pharmacol; 1988 Apr; 37(7):1233-44. PubMed ID: 3355597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pattern of AMP degradation in ischemic rabbit lung tissue.
    De Leyn P; Flameng W; Lerut T
    J Invest Surg; 1995; 8(1):7-19. PubMed ID: 7734434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelial nucleotide catabolism and adenosine production.
    Smolenski RT; Kochan Z; McDouall R; Page C; Seymour AL; Yacoub MH
    Cardiovasc Res; 1994 Jan; 28(1):100-4. PubMed ID: 8111778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous adenine nucleotides replete endothelial cell adenosine triphosphate after oxidant injury by adenosine uptake.
    Andreoli SP; Liechty EA; Mallett C
    J Lab Clin Med; 1990 Mar; 115(3):304-13. PubMed ID: 2313162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transendothelial transport and metabolism of adenosine and inosine in the intact rat aorta.
    Kroll K; Kelm MK; Bürrig KF; Schrader J
    Circ Res; 1989 Jun; 64(6):1147-57. PubMed ID: 2720915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal interstitial adenosine metabolism during ischemia in dogs.
    Nishiyama A; Kimura S; He H; Miura K; Rahman M; Fujisawa Y; Fukui T; Abe Y
    Am J Physiol Renal Physiol; 2001 Feb; 280(2):F231-8. PubMed ID: 11208598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential cardioprotection with selective inhibitors of adenosine metabolism and transport: role of purine release in ischemic and reperfusion injury.
    Abd-Elfattah AS; Jessen ME; Lekven J; Wechsler AS
    Mol Cell Biochem; 1998 Mar; 180(1-2):179-91. PubMed ID: 9546645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of adenosine triphosphate catabolism induced by deoxyadenosine and by nucleoside analogues in adenosine deaminase-inhibited human erythrocytes.
    Bontemps F; Van den Berghe G
    Cancer Res; 1989 Sep; 49(18):4983-9. PubMed ID: 2788493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.