These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 3348412)

  • 1. Kinetic model for phosphate transport in renal brush-border membranes.
    Béliveau R; Strévey J
    Am J Physiol; 1988 Mar; 254(3 Pt 2):F329-36. PubMed ID: 3348412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate transport in kidneys: effect of transmembrane electrical potential.
    Béliveau R; Strévey J
    Am J Physiol; 1991 Oct; 261(4 Pt 2):F663-9. PubMed ID: 1928377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione may inhibit sodium-dependent phosphate transport by renal brush-border membrane vesicles.
    Suzuki M; Kawaguchi Y; Ogawa A; Yamamoto H; Momose M; Morita T; Yokoyama K; Unemura S; Miyahara T
    Nihon Jinzo Gakkai Shi; 1989 Jun; 31(6):623-8. PubMed ID: 2795990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition by phenylglyoxal of the sodium-coupled fluxes of glucose and phosphate in renal brush-border membranes.
    Béliveau R; Bernier M; Giroux S; Bates D
    Biochem Cell Biol; 1988 Sep; 66(9):1005-12. PubMed ID: 3190881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kidney brush-border membrane transporters: differential sensitivity to diethyl pyrocarbonate.
    Beaumier B; Béliveau R
    Biochim Biophys Acta; 1991 Sep; 1068(2):142-8. PubMed ID: 1911827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate transport across the basolateral membrane from rat kidney cortex: sodium-dependence?
    Hagenbuch B; Murer H
    Pflugers Arch; 1986; 407 Suppl 2():S149-55. PubMed ID: 2881247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH gradient as an additional driving force in the renal re-absorption of phosphate.
    Strévey J; Giroux S; Béliveau R
    Biochem J; 1990 Nov; 271(3):687-92. PubMed ID: 2244874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different molecular sizes for Na(+)-dependent phosphonoformic acid binding and phosphate transport in renal brush border membrane vesicles.
    Béliveau R; Jetté M; Demeule M; Potier M; Lee J; Tenenhouse HS
    Biochim Biophys Acta; 1990 Oct; 1028(2):110-6. PubMed ID: 2145976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of parathyroid hormone (PTH) and dietary phosphate on the sodium-dependent phosphate transport system located in the rat renal brush border membrane.
    Murer H; Evers C; Stoll R; Kinne R
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():455-62. PubMed ID: 211000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pH on phosphate transport in rat renal brush border membrane vesicles.
    Amstutz M; Mohrmann M; Gmaj P; Murer H
    Am J Physiol; 1985 May; 248(5 Pt 2):F705-10. PubMed ID: 3993795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium-pyrazinoate cotransport in rabbit renal brush border membrane vesicles.
    Manganel M; Roch-Ramel F; Murer H
    Am J Physiol; 1985 Sep; 249(3 Pt 2):F400-8. PubMed ID: 4037092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sodium gradient induces conformational changes in the renal phosphate carrier.
    Béliveau R; Strevey J
    J Biol Chem; 1987 Dec; 262(35):16885-91. PubMed ID: 3680276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased transport of inorganic phosphate in renal brush borders of spontaneously hypertensive rats.
    Bindels RJ; Geertsen JA; Van Os CH
    Am J Physiol; 1986 Mar; 250(3 Pt 2):F470-5. PubMed ID: 3513621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of rat kidney proximal tubular brush border membranes. Role of c-AMP dependent protein phosphorylation in the regulation of phosphate transport.
    Biber J; Malmström K; Scalera V; Murer H
    Pflugers Arch; 1983 Aug; 398(3):221-6. PubMed ID: 6314241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal adaptation to a low phosphate diet in rats.
    Shah SV; Kempson SA; Northrup TE; Dousa TP
    J Clin Invest; 1979 Oct; 64(4):955-66. PubMed ID: 479377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na+-independent dehydro-L-ascorbic acid uptake in renal brush-border membrane vesicles.
    Bianchi J; Rose RC
    Biochim Biophys Acta; 1985 Sep; 819(1):75-82. PubMed ID: 4041453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for separate carriers for purine nucleosides and for pyrimidine nucleosides in the renal brush border membrane.
    Le Hir M
    Ren Physiol Biochem; 1990; 13(3):154-61. PubMed ID: 1690908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal phosphate transport and vitamin D metabolism in X-linked hypophosphatemic Gy mice: responses to phosphate deprivation.
    Tenenhouse HS; Meyer RA; Mandla S; Meyer MH; Gray RW
    Endocrinology; 1992 Jul; 131(1):51-6. PubMed ID: 1612032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Studies of oxalate efflux and oxalate transport via anion exchange in rat renal brush border membrane vesicles].
    Nishibuchi S; Okada Y; Yoshida O
    Nihon Jinzo Gakkai Shi; 1989 Jan; 31(1):57-65. PubMed ID: 2747000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of urate and p-aminohippurate transport in rat renal microvillus membrane vesicles.
    Kahn AM; Branham S; Weinman EJ
    Am J Physiol; 1983 Aug; 245(2):F151-8. PubMed ID: 6309010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.