These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels. Wu W; Davis RW; Tran-Gyamfi MB; Kuo A; LaButti K; Mihaltcheva S; Hundley H; Chovatia M; Lindquist E; Barry K; Grigoriev IV; Henrissat B; Gladden JM Appl Microbiol Biotechnol; 2017 Mar; 101(6):2603-2618. PubMed ID: 28078400 [TBL] [Abstract][Full Text] [Related]
8. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Hasunuma T; Okazaki F; Okai N; Hara KY; Ishii J; Kondo A Bioresour Technol; 2013 May; 135():513-22. PubMed ID: 23195654 [TBL] [Abstract][Full Text] [Related]
10. Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation. Botha J; Mizrachi E; Myburg AA; Cowan DA Extremophiles; 2018 Jan; 22(1):1-12. PubMed ID: 29110088 [TBL] [Abstract][Full Text] [Related]
11. Microbial cell factories based on filamentous bacteria, yeasts, and fungi. Ding Q; Ye C Microb Cell Fact; 2023 Jan; 22(1):20. PubMed ID: 36717860 [TBL] [Abstract][Full Text] [Related]
12. The functional properties of a xyloglucanase (GH12) of Aspergillus terreus expressed in Aspergillus nidulans may increase performance of biomass degradation. Vitcosque GL; Ribeiro LF; de Lucas RC; da Silva TM; Ribeiro LF; de Lima Damasio AR; Farinas CS; Gonçalves AZ; Segato F; Buckeridge MS; Jorge JA; Polizeli ML Appl Microbiol Biotechnol; 2016 Nov; 100(21):9133-9144. PubMed ID: 27245677 [TBL] [Abstract][Full Text] [Related]
13. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry. Ferreira Filho JA; Horta MAC; Beloti LL; Dos Santos CA; de Souza AP BMC Genomics; 2017 Oct; 18(1):779. PubMed ID: 29025413 [TBL] [Abstract][Full Text] [Related]
14. Characterization of novel lignocellulose-degrading enzymes from the porcupine microbiome using synthetic metagenomics. Thornbury M; Sicheri J; Slaine P; Getz LJ; Finlayson-Trick E; Cook J; Guinard C; Boudreau N; Jakeman D; Rohde J; McCormick C PLoS One; 2019; 14(1):e0209221. PubMed ID: 30601862 [TBL] [Abstract][Full Text] [Related]
15. Engineered microbial host selection for value-added bioproducts from lignocellulose. de Paula RG; Antoniêto ACC; Ribeiro LFC; Srivastava N; O'Donovan A; Mishra PK; Gupta VK; Silva RN Biotechnol Adv; 2019 Nov; 37(6):107347. PubMed ID: 30771467 [TBL] [Abstract][Full Text] [Related]
16. Discovery of genes coding for carbohydrate-active enzyme by metagenomic analysis of lignocellulosic biomasses. Montella S; Ventorino V; Lombard V; Henrissat B; Pepe O; Faraco V Sci Rep; 2017 Feb; 7():42623. PubMed ID: 28198423 [TBL] [Abstract][Full Text] [Related]
17. High cellulolytic potential of the Ktedonobacteria lineage revealed by genome-wide analysis of CAZymes. Zheng Y; Maruoka M; Nanatani K; Hidaka M; Abe N; Kaneko J; Sakai Y; Abe K; Yokota A; Yabe S J Biosci Bioeng; 2021 Jun; 131(6):622-630. PubMed ID: 33676867 [TBL] [Abstract][Full Text] [Related]
19. Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era. Liu G; Qin Y; Li Z; Qu Y Biotechnol Adv; 2013 Nov; 31(6):962-75. PubMed ID: 23507038 [TBL] [Abstract][Full Text] [Related]
20. Synthetic Biology towards Engineering Microbial Lignin Biotransformation. Yaguchi AL; Lee SJ; Blenner MA Trends Biotechnol; 2021 Oct; 39(10):1037-1064. PubMed ID: 33712323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]