These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 33484610)

  • 21. Performance and operational strategy of simultaneous nitrification, denitrification, and phosphorus removal system under the condition of low organic loading rate in wet weather.
    Li D; Wei Z; Li S; Lao H; Wang W; Zeng H; Zhang J
    Chemosphere; 2021 May; 270():129464. PubMed ID: 33388499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous nitrification, denitrification, and phosphorus removal in single-tank low-dissolved-oxygen systems under cyclic aeration.
    Ju LK; Huang L; Trivedi H
    Water Environ Res; 2007 Aug; 79(8):912-20. PubMed ID: 17824538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Nitrite Type Denitrifying Phosphorus Removal Capacity of Cycle Activated Sludge Technology Processes Under Different Inducing Patterns].
    Ma J; Wang J; Yu XJ; Zhang W; Wei XF; Chen YZ; Tian WQ
    Huan Jing Ke Xue; 2017 Nov; 38(11):4664-4672. PubMed ID: 29965411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An improved 1D reactive Bürger-Diehl settler model for secondary settling tank denitrification.
    Kirim G; Torfs E; Vanrolleghem PA
    Water Environ Res; 2022 Dec; 94(12):e10825. PubMed ID: 36518000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biological denitrification of brines from membrane treatment processes using an upflow sludge blanket (USB) reactor.
    Beliavski M; Meerovich I; Tarre S; Green M
    Water Sci Technol; 2010; 61(4):911-7. PubMed ID: 20182069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimum operation conditions of nitrogen and phosphorus removal by a biofilm-activated-sludge system.
    Liu JX; van Groenestijn JW
    J Environ Sci (China); 2003 Jan; 15(1):25-30. PubMed ID: 12602598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Steady-state analysis of activated sludge processes with a settler model including sludge compression.
    Diehl S; Zambrano J; Carlsson B
    Water Res; 2016 Jan; 88():104-116. PubMed ID: 26476681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of wind in secondary settling tanks for wastewater treatment - A computational fluid dynamics study. Part II: Rectangular secondary settling tanks.
    Gao H; Stenstrom MK
    Water Environ Res; 2020 Apr; 92(4):551-561. PubMed ID: 31549753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of feed characteristics on the organic matter, nitrogen and phosphorus removal in an activated sludge system treating piggery slurry.
    González C; García PA; Muñoz R
    Water Sci Technol; 2009; 60(8):2145-52. PubMed ID: 19844061
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological nutrient removal in membrane bioreactors: denitrification and phosphorus removal kinetics.
    Parco V; du Toit G; Wentzel M; Ekama G
    Water Sci Technol; 2007; 56(6):125-34. PubMed ID: 17898451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction between phosphorus removal and hybrid granular sludge formation under low hydraulic selection pressure at alternating anaerobic/aerobic conditions.
    Lang L; Wan J; Zhang J; Wang J; Wang Y
    Environ Technol; 2015; 36(21):2746-54. PubMed ID: 25921951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance evaluation of a large sewage treatment plant in Brazil, consisting of an upflow anaerobic sludge blanket reactor followed by activated sludge.
    Saliba PD; von Sperling M
    Water Sci Technol; 2017 Oct; 76(7-8):2003-2014. PubMed ID: 29068331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics in maximal settling capacity in an activated sludge treatment plant with highly loaded secondary settlers.
    Wilén BM; Lumley D; Nordqvist A
    Water Sci Technol; 2004; 50(7):187-94. PubMed ID: 15553475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of membrane solid-liquid separation on design of biological nutrient removal activated sludge systems.
    Ramphao M; Wentzel MC; Merritt R; Ekama GA; Young T; Buckley CA
    Biotechnol Bioeng; 2005 Mar; 89(6):630-46. PubMed ID: 15696540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon and nutrient removal from on-site wastewater using extended-aeration activated sludge and ion exchange.
    Safferman SI; Burks BD; Parker RA
    Water Environ Res; 2004; 76(5):404-12. PubMed ID: 15523786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cost-effective upgrading of a biological wastewater treatment plant by using lamella separators with bypass operation.
    Jardin N; Rath L; Schönfeld A; Grünebaum T
    Water Sci Technol; 2008; 57(10):1619-25. PubMed ID: 18520020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Activated Sludge Mineralization and Solutions in the Process of Zero-Valent Iron Autotrophic Denitrification].
    Zhang NB; Li X; Huang Y; Zhang WJ
    Huan Jing Ke Xue; 2017 Sep; 38(9):3793-3800. PubMed ID: 29965261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elevated salinity deteriorated enhanced biological phosphorus removal in an aerobic granular sludge sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal.
    He Q; Wang H; Chen L; Gao S; Zhang W; Song J; Yu J
    J Hazard Mater; 2020 May; 390():121782. PubMed ID: 32014652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A modified UCT method for biological nutrient removal: configuration and performance.
    Vaiopoulou E; Aivasidis A
    Chemosphere; 2008 Jul; 72(7):1062-8. PubMed ID: 18519149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving wastewater treatment plant performance by applying CFD models for design and operation: selected case studies.
    Patziger M
    Water Sci Technol; 2021 Jul; 84(2):323-332. PubMed ID: 34312340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.