BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 3348489)

  • 1. A reexamination of the role of microfilaments in neurulation in the chick embryo.
    Schoenwolf GC; Folsom D; Moe A
    Anat Rec; 1988 Jan; 220(1):87-102. PubMed ID: 3348489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of microfilaments in cranial neurulation in rat embryos: effects of short-term exposure to cytochalasin D.
    Morriss-Kay G; Tuckett F
    J Embryol Exp Morphol; 1985 Aug; 88():333-48. PubMed ID: 4078537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the mechanisms of neurulation in the chick: interrelationship of contractile proteins, microfilaments, and the shape of neuroepithelial cells.
    Lee HY; Nagele RG
    J Exp Zool; 1985 Aug; 235(2):205-15. PubMed ID: 3903030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bending of the neural plate during mouse spinal neurulation is independent of actin microfilaments.
    Ybot-Gonzalez P; Copp AJ
    Dev Dyn; 1999 Jul; 215(3):273-83. PubMed ID: 10398537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analyses of neuroepithelial cell shapes during bending of the mouse neural plate.
    Smith JL; Schoenwolf GC; Quan J
    J Comp Neurol; 1994 Apr; 342(1):144-51. PubMed ID: 8207124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microsurgical analyses of avian neurulation: separation of medial and lateral tissues.
    Schoenwolf GC
    J Comp Neurol; 1988 Oct; 276(4):498-507. PubMed ID: 3198787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further evidence of extrinsic forces in bending of the neural plate.
    Smith JL; Schoenwolf GC
    J Comp Neurol; 1991 May; 307(2):225-36. PubMed ID: 1856324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell cycle and neuroepithelial cell shape during bending of the chick neural plate.
    Smith JL; Schoenwolf GC
    Anat Rec; 1987 Jun; 218(2):196-206. PubMed ID: 3619087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the morphogenesis of the early rudiments of the developing central nervous system.
    Schoenwolf GC
    Scan Electron Microsc; 1982; (Pt 1):289-308. PubMed ID: 7167749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the mechanisms of neurulation in the chick: possible involvement of myosin in elevation of neural folds.
    Lee HY; Kosciuk MC; Nagele RG; Roisen FJ
    J Exp Zool; 1983 Mar; 225(3):449-57. PubMed ID: 6341501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shaping of the chick neuroepithelium during primary and secondary neurulation: role of cell elongation.
    Schoenwolf GC; Powers ML
    Anat Rec; 1987 Jun; 218(2):182-95. PubMed ID: 3619086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurulation in the Mexican salamander (Ambystoma mexicanum): a drug study and cell shape analysis of the epidermis and the neural plate.
    Brun RB; Garson JA
    J Embryol Exp Morphol; 1983 Apr; 74():275-95. PubMed ID: 6684145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A morphometric and computer-assisted three-dimensional reconstruction study of neural tube formation in chick embryos.
    Nagele RG; Bush KT; Lynch FJ; Lee HY
    Anat Rec; 1991 Dec; 231(4):425-36. PubMed ID: 1793173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium regulation of neural fold formation: visualization of the actin cytoskeleton in living chick embryos.
    Ferreira MC; Hilfer SR
    Dev Biol; 1993 Oct; 159(2):427-40. PubMed ID: 8405669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the mechanisms of neurulation in the chick: morphometric analysis of the relationship between regional variations in cell shape and sites of motive force generation.
    Nagele RG; Lee HY
    J Exp Zool; 1987 Feb; 241(2):197-205. PubMed ID: 3559504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the mechanisms of neurulation in the chick: morphometric analysis of force distribution within the neuroepithelium during neural tube formation.
    Nagele RG; Hunter E; Bush K; Lee HY
    J Exp Zool; 1987 Dec; 244(3):425-36. PubMed ID: 3443831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation.
    Smith JL; Schoenwolf GC
    J Exp Zool; 1989 Apr; 250(1):49-62. PubMed ID: 2723610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate mapping the avian neural plate with quail/chick chimeras: origin of prospective median wedge cells.
    Schoenwolf GC; Bortier H; Vakaet L
    J Exp Zool; 1989 Mar; 249(3):271-8. PubMed ID: 2708947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organelle distribution in the wedge-, spindle- and inverted wedge-shaped neuroepithelial cells during chick embryo neurulation.
    Fernandez JG; Chamorro CA; Paz P; Villar JM
    Acta Morphol Hung; 1988; 36(3-4):203-13. PubMed ID: 3151539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of contractile microfilaments in the morphogenesis of the developing foregut of chick embryos.
    Hosie S; Farag M; Vena M; Holloschi A; Schäfer KH
    Pediatr Surg Int; 2002 Oct; 18(7):611-4. PubMed ID: 12471476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.