These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33485024)

  • 21. Dynamic neural network approach to targeted balance assessment of individuals with and without neurological disease during non-steady-state locomotion.
    Pickle NT; Shearin SM; Fey NP
    J Neuroeng Rehabil; 2019 Jul; 16(1):88. PubMed ID: 31300001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developmental changes in spatial margin of stability in typically developing children relate to the mechanics of gait.
    Hallemans A; Verbecque E; Dumas R; Cheze L; Van Hamme A; Robert T
    Gait Posture; 2018 Jun; 63():33-38. PubMed ID: 29705520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new tool for assessing head movements and postural sway in children.
    Flatters I; Culmer P; Holt RJ; Wilkie RM; Mon-Williams M
    Behav Res Methods; 2014 Dec; 46(4):950-9. PubMed ID: 24415406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new process to measure postural sway using a Kinect depth camera during a Sensory Organisation Test.
    Maudsley-Barton S; Hoon Yap M; Bukowski A; Mills R; McPhee J
    PLoS One; 2020; 15(2):e0227485. PubMed ID: 32023256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of postural stability in the elderly with stroke.
    Corriveau H; Hébert R; Raîche M; Prince F
    Arch Phys Med Rehabil; 2004 Jul; 85(7):1095-101. PubMed ID: 15241756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of postural control in healthy children: a functional approach.
    Assaiante C; Mallau S; Viel S; Jover M; Schmitz C
    Neural Plast; 2005; 12(2-3):109-18; discussion 263-72. PubMed ID: 16097479
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The validity of the first and second generation Microsoft Kinect™ for identifying joint center locations during static postures.
    Xu X; McGorry RW
    Appl Ergon; 2015 Jul; 49():47-54. PubMed ID: 25766422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensory organization of balance responses in children 3-6 years of age: a normative study with diagnostic implications.
    Foudriat BA; Di Fabio RP; Anderson JH
    Int J Pediatr Otorhinolaryngol; 1993 Oct; 27(3):255-71. PubMed ID: 8270364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gender and age affect balance performance in primary school-aged children.
    Mickle KJ; Munro BJ; Steele JR
    J Sci Med Sport; 2011 May; 14(3):243-8. PubMed ID: 21276751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The dynamic balance of the children with cerebral palsy and typical developing during gait. Part I: Spatial relationship between COM and COP trajectories.
    Hsue BJ; Miller F; Su FC
    Gait Posture; 2009 Apr; 29(3):465-70. PubMed ID: 19111469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vertical stiffness and balance control of two-legged hopping in-place in children with and without Down syndrome.
    Beerse M; Wu J
    Gait Posture; 2018 Jun; 63():39-45. PubMed ID: 29705521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Virtual reality balance training for elderly: Similar skiing games elicit different challenges in balance training.
    de Vries AW; Faber G; Jonkers I; Van Dieen JH; Verschueren SMP
    Gait Posture; 2018 Jan; 59():111-116. PubMed ID: 29028622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of Mobile Device Accelerometry to Enhance Evaluation of Postural Instability in Parkinson Disease.
    Ozinga SJ; Linder SM; Alberts JL
    Arch Phys Med Rehabil; 2017 Apr; 98(4):649-658. PubMed ID: 27670925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling margin of stability with feet in place following a postural perturbation: Effect of altered anthropometric models for estimated extrapolated centre of mass.
    Inkol KA; Huntley AH; Vallis LA
    Gait Posture; 2018 May; 62():434-439. PubMed ID: 29653405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of seat heights and foot placement positions on postural control in children with cerebral palsy during a sit-to-stand task.
    Medeiros DL; Conceição JS; Graciosa MD; Koch DB; Santos MJ; Ries LG
    Res Dev Disabil; 2015; 43-44():1-10. PubMed ID: 26151438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. What COP and Kinematic Parameters Better Characterize Postural Control in Standing Balance Tasks?
    Caballero C; Barbado D; Moreno FJ
    J Mot Behav; 2015; 47(6):550-62. PubMed ID: 26016403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinematic error magnitude in the single-mass inverted pendulum model of human standing posture.
    Fok KL; Lee J; Vette AH; Masani K
    Gait Posture; 2018 Jun; 63():23-26. PubMed ID: 29702371
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of three methods to estimate the center of mass during balance assessment.
    Lafond D; Duarte M; Prince F
    J Biomech; 2004 Sep; 37(9):1421-6. PubMed ID: 15275850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functionality level and its relation to postural control during sitting-to-stand movement in children with cerebral palsy.
    Pavão SL; Dos Santos AN; de Oliveira AB; Rocha NA
    Res Dev Disabil; 2014 Feb; 35(2):506-11. PubMed ID: 24374603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path.
    Vallis LA; McFadyen BJ
    Exp Brain Res; 2005 Nov; 167(1):119-27. PubMed ID: 16177831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.