These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 33485027)
1. Deep Q-learning for the selection of optimal isocratic scouting runs in liquid chromatography. Kensert A; Collaerts G; Efthymiadis K; Desmet G; Cabooter D J Chromatogr A; 2021 Feb; 1638():461900. PubMed ID: 33485027 [TBL] [Abstract][Full Text] [Related]
2. A perspective on the use of deep deterministic policy gradient reinforcement learning for retention time modeling in reversed-phase liquid chromatography. Kensert A; Desmet G; Cabooter D J Chromatogr A; 2024 Jan; 1713():464570. PubMed ID: 38101304 [TBL] [Abstract][Full Text] [Related]
3. Applicability of linear and nonlinear retention-time models for reversed-phase liquid chromatography separations of small molecules, peptides, and intact proteins. Tyteca E; De Vos J; Vankova N; Cesla P; Desmet G; Eeltink S J Sep Sci; 2016 Apr; 39(7):1249-57. PubMed ID: 26829155 [TBL] [Abstract][Full Text] [Related]
4. On the inherent data fitting problems encountered in modeling retention behavior of analytes with dual retention mechanism. Tyteca E; Desmet G J Chromatogr A; 2015 Jul; 1403():81-95. PubMed ID: 26044381 [TBL] [Abstract][Full Text] [Related]
5. Possibilities of retention modeling and computer assisted method development in supercritical fluid chromatography. Tyteca E; Desfontaine V; Desmet G; Guillarme D J Chromatogr A; 2015 Feb; 1381():219-28. PubMed ID: 25601318 [TBL] [Abstract][Full Text] [Related]
6. Generic approach to the method development of intact protein separations using hydrophobic interaction chromatography. Tyteca E; De Vos J; Tassi M; Cook K; Liu X; Kaal E; Eeltink S J Sep Sci; 2018 Mar; 41(5):1017-1024. PubMed ID: 29178450 [TBL] [Abstract][Full Text] [Related]
7. Retention modeling and method development in hydrophilic interaction chromatography. Tyteca E; Périat A; Rudaz S; Desmet G; Guillarme D J Chromatogr A; 2014 Apr; 1337():116-27. PubMed ID: 24613041 [TBL] [Abstract][Full Text] [Related]
8. Experimental design and re-parameterization of the Neue-Kuss model for accurate and precise prediction of isocratic retention factors from gradient measurements in reversed phase liquid chromatography. Rutan SC; Cash K; Stoll DR J Chromatogr A; 2023 Nov; 1711():464443. PubMed ID: 37890376 [TBL] [Abstract][Full Text] [Related]
9. Advancing HIC method development: Retention-time modeling and tuning selectivity with ternary mobile-phase systems. Ewonde Ewonde R; Molenaar SRA; Broeckhoven K; Eeltink S J Chromatogr A; 2024 Aug; 1730():465133. PubMed ID: 38996515 [TBL] [Abstract][Full Text] [Related]
10. Accuracy of retention model parameters obtained from retention data in liquid chromatography. Brau T; Pirok B; Rutan S; Stoll D J Sep Sci; 2022 Sep; 45(17):3241-3255. PubMed ID: 35304809 [TBL] [Abstract][Full Text] [Related]
11. Testing experimental designs in liquid chromatography (I): Development and validation of a method for the comprehensive inspection of experimental designs. Navarro-Huerta JA; Gisbert-Alonso A; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2020 Aug; 1624():461180. PubMed ID: 32540058 [TBL] [Abstract][Full Text] [Related]
12. Development of an ion chromatographic gradient retention model from isocratic elution experiments. Bolanca T; Cerjan-Stefanović S; Lusa M; Rogosić M; Ukić S J Chromatogr A; 2006 Jul; 1121(2):228-35. PubMed ID: 16698028 [TBL] [Abstract][Full Text] [Related]
13. Testing experimental designs in liquid chromatography (II): Influence of the design geometry on the prediction performance of retention models. Gisbert-Alonso A; Navarro-Huerta JA; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2021 Sep; 1654():462458. PubMed ID: 34399141 [TBL] [Abstract][Full Text] [Related]
14. Benefits of solvent concentration pulses in retention time modelling of liquid chromatography. Navarro-Huerta JA; Gisbert-Alonso A; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2019 Jul; 1597():76-88. PubMed ID: 30902430 [TBL] [Abstract][Full Text] [Related]
16. Computer simulation for the convenient optimization of isocratic reversed-phase liquid chromatographic separations by varying temperature and mobile phase strength. Wolcott RG; Dolan JW; Snyder LR J Chromatogr A; 2000 Feb; 869(1-2):3-25. PubMed ID: 10720221 [TBL] [Abstract][Full Text] [Related]
17. Probing selectivity of mixed-mode reversed-phase/weak-anion-exchange liquid chromatography to advance method development. Dores-Sousa JL; De Vos J; Kok WT; Eeltink S J Chromatogr A; 2018 Oct; 1570():75-81. PubMed ID: 30077460 [TBL] [Abstract][Full Text] [Related]
18. Prediction of peptide retention times in normal-phase liquid chromatography with only a single gradient run. Yoshida T; Okada T J Chromatogr A; 1999 May; 841(1):19-32. PubMed ID: 10360326 [TBL] [Abstract][Full Text] [Related]
19. Error analysis and performance of different retention models in the transference of data from/to isocratic/gradient elution. Vivó-Truyols G; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2003 Nov; 1018(2):169-81. PubMed ID: 14620568 [TBL] [Abstract][Full Text] [Related]
20. [General retention time formulae for gradient liquid chromatography with any combination of isocratic, linear and stepwise gradients]. Hao W; Di B; Yang Y; Chen Q; Wang J Se Pu; 2010 Jun; 28(6):541-6. PubMed ID: 20873572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]