These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 33485027)
21. Deep reinforcement learning for the direct optimization of gradient separations in liquid chromatography. Kensert A; Libin P; Desmet G; Cabooter D J Chromatogr A; 2024 Apr; 1720():464768. PubMed ID: 38442496 [TBL] [Abstract][Full Text] [Related]
22. Retention models for isocratic and gradient elution in reversed-phase liquid chromatography. Nikitas P; Pappa-Louisi A J Chromatogr A; 2009 Mar; 1216(10):1737-55. PubMed ID: 18838140 [TBL] [Abstract][Full Text] [Related]
23. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients. Wiese S; Teutenberg T; Schmidt TC J Chromatogr A; 2011 Sep; 1218(39):6898-906. PubMed ID: 21872258 [TBL] [Abstract][Full Text] [Related]
24. Rebirth of recycling liquid chromatography with modern chromatographic columns : Extension to gradient elution. Gritti F J Chromatogr A; 2021 Sep; 1653():462424. PubMed ID: 34340057 [TBL] [Abstract][Full Text] [Related]
25. Predicting the behaviour of polydisperse polymers in liquid chromatography under isocratic and gradient conditions. Schoenmakers P; Fitzpatrick F; Grothey R J Chromatogr A; 2002 Aug; 965(1-2):93-107. PubMed ID: 12236541 [TBL] [Abstract][Full Text] [Related]
26. Multimode gradient elution in reversed-phase liquid chromatography: application to retention prediction and separation optimization of a set of amino acids in gradient runs involving simultaneous variations of mobile-phase composition, flow rate, and temperature. Pappa-Louisi A; Nikitas P; Papachristos K; Balkatzopoulou P Anal Chem; 2009 Feb; 81(3):1217-23. PubMed ID: 19123773 [TBL] [Abstract][Full Text] [Related]
27. Prediction of the effects of methanol and competing ion concentration on retention in the ion chromatographic separation of anionic and cationic pharmaceutically related compounds. Zakaria P; Dicinoski G; Hanna-Brown M; Haddad PR J Chromatogr A; 2010 Sep; 1217(39):6069-76. PubMed ID: 20732686 [TBL] [Abstract][Full Text] [Related]
28. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography]. Shan YC; Zhang YK; Zhao RH Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907 [TBL] [Abstract][Full Text] [Related]
30. Applicability of retention modelling in hydrophilic-interaction liquid chromatography for algorithmic optimization programs with gradient-scanning techniques. Pirok BWJ; Molenaar SRA; van Outersterp RE; Schoenmakers PJ J Chromatogr A; 2017 Dec; 1530():104-111. PubMed ID: 29146427 [TBL] [Abstract][Full Text] [Related]
31. Gradient-elution parameters in capillary liquid chromatography for high-speed separations of peptides and intact proteins. Vaast A; Tyteca E; Desmet G; Schoenmakers PJ; Eeltink S J Chromatogr A; 2014 Aug; 1355():149-57. PubMed ID: 24986072 [TBL] [Abstract][Full Text] [Related]
32. Enhancement in the computation of gradient retention times in liquid chromatography using root-finding methods. López-Ureña S; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2019 Aug; 1600():137-147. PubMed ID: 31056274 [TBL] [Abstract][Full Text] [Related]
33. Comprehensive and Empirical Evaluation of Machine Learning Algorithms for Small Molecule LC Retention Time Prediction. Bouwmeester R; Martens L; Degroeve S Anal Chem; 2019 Mar; 91(5):3694-3703. PubMed ID: 30702864 [TBL] [Abstract][Full Text] [Related]
34. Silica hydride based phases for small molecule separations using automated liquid chromatography-mass spectrometry method development. Appulage DK; Schug KA J Chromatogr A; 2017 Jul; 1507():115-123. PubMed ID: 28596010 [TBL] [Abstract][Full Text] [Related]
35. Reducing the influence of geometry-induced gradient deformation in liquid chromatographic retention modelling. Bos TS; Niezen LE; den Uijl MJ; Molenaar SRA; Lege S; Schoenmakers PJ; Somsen GW; Pirok BWJ J Chromatogr A; 2021 Jan; 1635():461714. PubMed ID: 33264699 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of three temperature- and mobile phase-dependent retention models for reversed-phase liquid chromatographic retention and apparent retention enthalpy. Horner AR; Wilson RE; Groskreutz SR; Murray BE; Weber SG J Chromatogr A; 2019 Mar; 1589():73-82. PubMed ID: 30626503 [TBL] [Abstract][Full Text] [Related]
37. Approaches to model the retention and peak profile in linear gradient reversed-phase liquid chromatography. Baeza-Baeza JJ; Ortiz-Bolsico C; Torres-Lapasió JR; García-Álvarez-Coque MC J Chromatogr A; 2013 Apr; 1284():28-35. PubMed ID: 23453677 [TBL] [Abstract][Full Text] [Related]
38. Performance comparison of nonlinear and linear regression algorithms coupled with different attribute selection methods for quantitative structure - retention relationships modelling in micellar liquid chromatography. Krmar J; Vukićević M; Kovačević A; Protić A; Zečević M; Otašević B J Chromatogr A; 2020 Jul; 1623():461146. PubMed ID: 32505269 [TBL] [Abstract][Full Text] [Related]
39. Stationary-phase optimized selectivity liquid chromatography: development of a linear gradient prediction algorithm. De Beer M; Lynen F; Chen K; Ferguson P; Hanna-Brown M; Sandra P Anal Chem; 2010 Mar; 82(5):1733-43. PubMed ID: 20146446 [TBL] [Abstract][Full Text] [Related]
40. Retention prediction and separation optimization of ionizable analytes in reversed-phase liquid chromatography by organic modifier gradients in different eluent pHs. Fasoula S; Zisi Ch; Nikitas P; Pappa-Louisi A J Chromatogr A; 2013 Aug; 1305():131-8. PubMed ID: 23885673 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]