These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 33485240)
1. Hybrid variable selection strategy coupled with random forest (RF) for quantitative analysis of methanol in methanol-gasoline via Raman spectroscopy. Li M; Xu Y; Men J; Yan C; Tang H; Zhang T; Li H Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 251():119430. PubMed ID: 33485240 [TBL] [Abstract][Full Text] [Related]
2. A novel hybrid feature selection strategy in quantitative analysis of laser-induced breakdown spectroscopy. Yan C; Liang J; Zhao M; Zhang X; Zhang T; Li H Anal Chim Acta; 2019 Nov; 1080():35-42. PubMed ID: 31409473 [TBL] [Abstract][Full Text] [Related]
3. Raman spectroscopy combined with partial least squares (PLS) based on hybrid spectral preprocessing and backward interval PLS (biPLS) for quantitative analysis of four PAHs in oil sludge. Ma C; Zhai L; Ding J; Liu Y; Hu S; Zhang T; Tang H; Li H Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 310():123953. PubMed ID: 38290282 [TBL] [Abstract][Full Text] [Related]
4. Multi-element Quantitative Analysis of Single Micro-sized Suspended Particles in Air with High Accuracy Based on Random Forest and Variable Selection Strategies. Chen T; Zhang T; Niu C; Feng T; Tang H; Cheng X; Li H Anal Chem; 2022 Dec; 94(50):17595-17605. PubMed ID: 36475646 [TBL] [Abstract][Full Text] [Related]
5. Quantitative Analysis of the Cu Element Enhanced by AgNPs in a Single Microsized Suspended Particle Based on Optical Trapping-LIBS and Machine Learning. Chen T; Zhang T; Tang H; Cheng X; Li H Anal Chem; 2023 Mar; 95(10):4819-4827. PubMed ID: 36857731 [TBL] [Abstract][Full Text] [Related]
6. Quantitative analysis of soil potassium by near-infrared (NIR) spectroscopy combined with a three-step progressive hybrid variable selection strategy. Du X; Chen H; Xie J; Li L; Cai K; Meng F Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan; 324():124998. PubMed ID: 39178690 [TBL] [Abstract][Full Text] [Related]
7. Selection of the Effective Characteristic Spectra Based on the Chemical Structure and Its Application in Rapid Analysis of Ethanol Content in Gasoline. Li K; Zhang C; Du B; Song X; Li Q; Zhang Z ACS Omega; 2022 Jun; 7(23):20291-20297. PubMed ID: 35721958 [TBL] [Abstract][Full Text] [Related]
8. Accurate quantification of alkalinity of sintered ore by random forest model based on PCA and variable importance (PCA-VI-RF). Deng X; Yang G; Zhang H; Chen G Appl Opt; 2020 Mar; 59(7):2042-2049. PubMed ID: 32225725 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous determination of methanol and ethanol in gasoline using NIR spectroscopy: effect of gasoline composition. Fernandes HL; Raimundo IM; Pasquini C; Rohwedder JJ Talanta; 2008 May; 75(3):804-10. PubMed ID: 18585150 [TBL] [Abstract][Full Text] [Related]
10. Accurate identification of methanol and ethanol gasoline types and rapid detection of the alcohol content using effective chemical information. Li K; Ding C; Zhang J; Du B; Song X; Wang G; Li Q; Zhang Y; Zhang Z Talanta; 2024 Jul; 274():125961. PubMed ID: 38555768 [TBL] [Abstract][Full Text] [Related]
11. Unsupervised Clustering-Assisted Method for Consensual Quantitative Analysis of Methanol-Gasoline Blends by Raman Spectroscopy. Lu B; Wu S; Liu D; Wu W; Zhou W; Yuan LM Molecules; 2024 Mar; 29(7):. PubMed ID: 38611707 [TBL] [Abstract][Full Text] [Related]
12. A Versatile Method for Quantitative Analysis of Total Iron Content in Iron Ore Using Laser-Induced Breakdown Spectroscopy. Su P; Wu X; Li C; Yan C; An Y; Liu S Appl Spectrosc; 2023 Feb; 77(2):140-150. PubMed ID: 36348501 [TBL] [Abstract][Full Text] [Related]
13. Rapid quantitative analysis of petroleum coke properties by laser-induced breakdown spectroscopy combined with random forest based on a variable selection strategy. Hu S; Ding J; Dong Y; Zhang T; Tang H; Li H RSC Adv; 2024 May; 14(23):16358-16367. PubMed ID: 38774617 [TBL] [Abstract][Full Text] [Related]
14. [Determination of Gasoline Composition Based on Raman Spectroscopy]. Zhang B; Deng ZY; Zheng JK; Wang XP Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1577-81. PubMed ID: 26601370 [TBL] [Abstract][Full Text] [Related]
16. A Comparative Approach to Screen the Capability of Raman and Infrared (Mid- and Near-) Spectroscopy for Quantification of Low-Active Pharmaceutical Ingredient Content Solid Dosage Forms: The Case of Alprazolam. Makraduli L; Makreski P; Goracinova K; Stefov S; Anevska M; Geskovski N Appl Spectrosc; 2020 Jun; 74(6):661-673. PubMed ID: 32031007 [TBL] [Abstract][Full Text] [Related]
17. Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques. Douglas RK; Nawar S; Alamar MC; Mouazen AM; Coulon F Sci Total Environ; 2018 Mar; 616-617():147-155. PubMed ID: 29127788 [TBL] [Abstract][Full Text] [Related]
18. Free variable selection QSPR study to predict (19)F chemical shifts of some fluorinated organic compounds using Random Forest and RBF-PLS methods. Goudarzi N Spectrochim Acta A Mol Biomol Spectrosc; 2016 Apr; 158():60-4. PubMed ID: 26820549 [TBL] [Abstract][Full Text] [Related]
19. Gasoline quality prediction using the alternating conditional expectation (ACE) algorithm and ATR-FTIR. Sadrara M; Khanmohammadi Khorrami M Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 310():123903. PubMed ID: 38277787 [TBL] [Abstract][Full Text] [Related]
20. Determination of benzo(a)pyrene in peanut oil based on Raman spectroscopy and machine learning methods. Liu W; Sun S; Liu Y; Deng H; Hong F; Liu C; Zheng L Spectrochim Acta A Mol Biomol Spectrosc; 2023 Oct; 299():122806. PubMed ID: 37167744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]