These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 33485265)

  • 61. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH.
    Wang K; Yin J; Shen D; Li N
    Bioresour Technol; 2014 Jun; 161():395-401. PubMed ID: 24727700
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effect of enzymatic pretreatment on solubilization and volatile fatty acid production in fermentation of food waste.
    Kim HJ; Choi YG; Kim GD; Kim SH; Chung TH
    Water Sci Technol; 2005; 52(10-11):51-9. PubMed ID: 16459776
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Waste-derived volatile fatty acid production and ammonium removal from it by ion exchange process with natural zeolite.
    Sapmaz T; Mahboubi A; Taher MN; Beler-Baykal B; Karagunduz A; Taherzadeh MJ; Koseoglu-Imer DY
    Bioengineered; 2022 Jun; 13(6):14751-14769. PubMed ID: 36250716
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Pilot-scale fermentation of urban food waste for volatile fatty acids production: The importance of pH.
    Yu P; Tu W; Wu M; Zhang Z; Wang H
    Bioresour Technol; 2021 Jul; 332():125116. PubMed ID: 33857863
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation.
    Zhang L; Loh KC; Dai Y; Tong YW
    Waste Manag; 2020 May; 109():75-84. PubMed ID: 32388405
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways.
    Zhou M; Yan B; Wong JWC; Zhang Y
    Bioresour Technol; 2018 Jan; 248(Pt A):68-78. PubMed ID: 28693950
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A comprehensive review on current status and future perspectives of microbial volatile fatty acids production as platform chemicals.
    Varghese VK; Poddar BJ; Shah MP; Purohit HJ; Khardenavis AA
    Sci Total Environ; 2022 Apr; 815():152500. PubMed ID: 34968606
    [TBL] [Abstract][Full Text] [Related]  

  • 68. High rejection rate of polysaccharides by microfiltration benefits Christensenella minuta and acetic acid production in an anaerobic membrane bioreactor for sludge fermentation.
    Gao X; Zhang Q; Zhu H
    Bioresour Technol; 2019 Jun; 282():197-201. PubMed ID: 30861449
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Octylphenol facilitates fermentative volatile fatty acids recovery from waste activated sludge.
    Yuan Y; Hu X; Wang D; Liu Y; Zeng Z; Chen H
    Sci Total Environ; 2020 Aug; 729():139035. PubMed ID: 32498178
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Bioproduction of volatile fatty acids from excess municipal sludge by multistage countercurrent fermentation].
    Guo L; Liu H; Li X; Du G; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2008 Jul; 24(7):1233-9. PubMed ID: 18837401
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enhancing acidification efficiency of vegetable wastes through heat shock pretreatment and initial pH regulation.
    Cai F; Lin M; Wang L; Song C; Jin Y; Liu G; Chen C
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):1079-1093. PubMed ID: 38030843
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Factors influencing pressure-driven membrane-assisted volatile fatty acids recovery and purification-A review.
    Pervez MN; Mahboubi A; Uwineza C; Zarra T; Belgiorno V; Naddeo V; Taherzadeh MJ
    Sci Total Environ; 2022 Apr; 817():152993. PubMed ID: 35026250
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Metagenomic insights into improving mechanisms of Fe
    Yang G; Xu C; Varjani S; Zhou Y; Wc Wong J; Duan G
    Bioresour Technol; 2022 Oct; 361():127703. PubMed ID: 35907599
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Production of volatile fatty acids from sewage organic matter by combined bioflocculation and alkaline fermentation.
    Khiewwijit R; Temmink H; Labanda A; Rijnaarts H; Keesman KJ
    Bioresour Technol; 2015 Dec; 197():295-301. PubMed ID: 26342342
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of pH and feeding regimes.
    Chen H; Meng H; Nie Z; Zhang M
    Bioresour Technol; 2013 Jan; 128():533-8. PubMed ID: 23201909
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A preliminary metatranscriptomic insight of eggshells conditioning on substrates metabolism during food wastes anaerobic fermentation.
    Luo J; Huang W; Zhang Q; Guo W; Xu R; Fang F; Cao J; Wu Y
    Sci Total Environ; 2021 Mar; 761():143214. PubMed ID: 33160662
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Bisphenol A alters volatile fatty acids accumulation during sludge anaerobic fermentation by affecting amino acid metabolism, material transport and carbohydrate-active enzymes.
    Jiang X; Yan Y; Feng L; Wang F; Guo Y; Zhang X; Zhang Z
    Bioresour Technol; 2021 Mar; 323():124588. PubMed ID: 33383358
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Regulation of volatile fatty acid accumulation from waste: Effect of inoculum pretreatment.
    Jayakrishnan U; Deka D; Das G
    Water Environ Res; 2021 Jul; 93(7):1019-1031. PubMed ID: 33259657
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Agroindustrial waste as a resource for volatile fatty acids production via anaerobic fermentation.
    Greses S; Tomás-Pejó E; Gónzalez-Fernández C
    Bioresour Technol; 2020 Feb; 297():122486. PubMed ID: 31796382
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Anaerobic fermentation of hydrothermal liquefaction wastewater of dewatered sewage sludge for volatile fatty acids production with focuses on the degradation of organic components and microbial community compositions.
    Chen Z; Rao Y; Usman M; Chen H; Białowiec A; Zhang S; Luo G
    Sci Total Environ; 2021 Jul; 777():146077. PubMed ID: 33684756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.