BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 33485381)

  • 1. Four cellulose-active lytic polysaccharide monooxygenases from Cellulomonas species.
    Li J; Solhi L; Goddard-Borger ED; Mathieu Y; Wakarchuk WW; Withers SG; Brumer H
    Biotechnol Biofuels; 2021 Jan; 14(1):29. PubMed ID: 33485381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitin-Active Lytic Polysaccharide Monooxygenases Are Rare in
    Li J; Goddard-Borger ED; Raji O; Saxena H; Solhi L; Mathieu Y; Master ER; Wakarchuk WW; Brumer H
    Appl Environ Microbiol; 2022 Aug; 88(15):e0096822. PubMed ID: 35862679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases.
    Forsberg Z; Mackenzie AK; Sørlie M; Røhr ÅK; Helland R; Arvai AS; Vaaje-Kolstad G; Eijsink VG
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8446-51. PubMed ID: 24912171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Six Lytic Polysaccharide Monooxygenases from
    Tõlgo M; Hegnar OA; Østby H; Várnai A; Vilaplana F; Eijsink VGH; Olsson L
    Appl Environ Microbiol; 2022 Mar; 88(6):e0009622. PubMed ID: 35080911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The
    Yao RA; Reyre J-L; Tamburrini KC; Haon M; Tranquet O; Nalubothula A; Mukherjee S; Le Gall S; Grisel S; Longhi S; Madhuprakash J; Bissaro B; Berrin J-G
    Appl Environ Microbiol; 2023 Oct; 89(10):e0057323. PubMed ID: 37702503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of lignin fractions isolated from different biomass sources on cellulose oxidation by fungal lytic polysaccharide monooxygenases.
    Muraleedharan MN; Zouraris D; Karantonis A; Topakas E; Sandgren M; Rova U; Christakopoulos P; Karnaouri A
    Biotechnol Biofuels; 2018; 11():296. PubMed ID: 30386433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases.
    Forsberg Z; Røhr AK; Mekasha S; Andersson KK; Eijsink VG; Vaaje-Kolstad G; Sørlie M
    Biochemistry; 2014 Mar; 53(10):1647-56. PubMed ID: 24559135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa.
    Hegnar OA; Østby H; Petrović DM; Olsson L; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2021 Nov; 87(24):e0165221. PubMed ID: 34613755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic debranching is a key determinant of the xylan-degrading activity of family AA9 lytic polysaccharide monooxygenases.
    Tõlgo M; Hegnar OA; Larsbrink J; Vilaplana F; Eijsink VGH; Olsson L
    Biotechnol Biofuels Bioprod; 2023 Jan; 16(1):2. PubMed ID: 36604763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action.
    Várnai A; Umezawa K; Yoshida M; Eijsink VGH
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific Xylan Activity Revealed for AA9 Lytic Polysaccharide Monooxygenases of the Thermophilic Fungus
    Hüttner S; Várnai A; Petrović DM; Bach CX; Kim Anh DT; Thanh VN; Eijsink VGH; Larsbrink J; Olsson L
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in
    Adnan M; Ma X; Xie Y; Waheed A; Liu G
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity.
    Jensen MS; Klinkenberg G; Bissaro B; Chylenski P; Vaaje-Kolstad G; Kvitvang HF; Nærdal GK; Sletta H; Forsberg Z; Eijsink VGH
    J Biol Chem; 2019 Dec; 294(50):19349-19364. PubMed ID: 31656228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidized Product Profiles of AA9 Lytic Polysaccharide Monooxygenases Depend on the Type of Cellulose.
    Sun P; Valenzuela SV; Chunkrua P; Javier Pastor FI; Laurent CVFP; Ludwig R; van Berkel WJH; Kabel MA
    ACS Sustain Chem Eng; 2021 Oct; 9(42):14124-14133. PubMed ID: 34722005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sensitive, accurate, and high-throughput gluco-oligosaccharide oxidase-based HRP colorimetric method for assaying lytic polysaccharide monooxygenase activity.
    Wu S; Tian J; Xie N; Adnan M; Wang J; Liu G
    Biotechnol Biofuels Bioprod; 2022 Feb; 15(1):15. PubMed ID: 35418300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity.
    Frommhagen M; Koetsier MJ; Westphal AH; Visser J; Hinz SW; Vincken JP; van Berkel WJ; Kabel MA; Gruppen H
    Biotechnol Biofuels; 2016; 9(1):186. PubMed ID: 27588039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion of AA9 Lytic Polysaccharide Monooxygenases Impacts A. nidulans Secretome and Growth on Lignocellulose.
    Terrasan CRF; Rubio MV; Gerhardt JA; Cairo JPF; Contesini FJ; Zubieta MP; Figueiredo FL; Valadares FL; Corrêa TLR; Murakami MT; Franco TT; Davies GJ; Walton PH; Damasio A
    Microbiol Spectr; 2022 Jun; 10(3):e0212521. PubMed ID: 35658600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery, activity and characterisation of an AA10 lytic polysaccharide oxygenase from the shipworm symbiont
    Fowler CA; Sabbadin F; Ciano L; Hemsworth GR; Elias L; Bruce N; McQueen-Mason S; Davies GJ; Walton PH
    Biotechnol Biofuels; 2019; 12():232. PubMed ID: 31583018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina.
    Bennati-Granier C; Garajova S; Champion C; Grisel S; Haon M; Zhou S; Fanuel M; Ropartz D; Rogniaux H; Gimbert I; Record E; Berrin JG
    Biotechnol Biofuels; 2015; 8():90. PubMed ID: 26136828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An AA9-LPMO containing a CBM1 domain in Aspergillus nidulans is active on cellulose and cleaves cello-oligosaccharides.
    Jagadeeswaran G; Gainey L; Mort AJ
    AMB Express; 2018 Oct; 8(1):171. PubMed ID: 30328527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.