BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33486033)

  • 1. Graphene nanoribbons: A state-of-the-art in health care.
    Shende P; Pathan N
    Int J Pharm; 2021 Feb; 595():120269. PubMed ID: 33486033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene nanoribbons: A promising nanomaterial for biomedical applications.
    Johnson AP; Gangadharappa HV; Pramod K
    J Control Release; 2020 Sep; 325():141-162. PubMed ID: 32622962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic, transport, magnetic, and optical properties of graphene nanoribbons and their optical sensing applications: A comprehensive review.
    Kumar S; Pratap S; Kumar V; Mishra RK; Gwag JS; Chakraborty B
    Luminescence; 2023 Jul; 38(7):909-953. PubMed ID: 35850156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene nanoribbon: An emerging and efficient flat molecular platform for advanced biosensing.
    Johnson AP; Sabu C; Swamy NK; Anto A; Gangadharappa HV; Pramod K
    Biosens Bioelectron; 2021 Jul; 184():113245. PubMed ID: 33895691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomically precise bottom-up fabrication of graphene nanoribbons.
    Cai J; Ruffieux P; Jaafar R; Bieri M; Braun T; Blankenburg S; Muoth M; Seitsonen AP; Saleh M; Feng X; Müllen K; Fasel R
    Nature; 2010 Jul; 466(7305):470-3. PubMed ID: 20651687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption.
    Yu D; Liu F
    Nano Lett; 2007 Oct; 7(10):3046-50. PubMed ID: 17845065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of Cisplatin on Oxidized Graphene Nanoribbons for Improving the Uptake in Non-small Cell Lung Carcinoma Cell Line A549.
    Augustine S; Prabhakar B; Shende P
    Curr Drug Deliv; 2022; 19(6):697-705. PubMed ID: 34238188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in graphene nanoribbons for biosensing and biomedicine.
    Luo S; Chen X; He Y; Gu Y; Zhu C; Yang GH; Qu LL
    J Mater Chem B; 2021 Aug; 9(31):6129-6143. PubMed ID: 34291262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery.
    Panwar N; Soehartono AM; Chan KK; Zeng S; Xu G; Qu J; Coquet P; Yong KT; Chen X
    Chem Rev; 2019 Aug; 119(16):9559-9656. PubMed ID: 31287663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Utilizing Functionalized Graphene Oxide Nanoribbons as Compatible Biomaterial for Lysozyme.
    Chaudhary K; Yadav N; Venkatesu P; Masram DT
    ACS Appl Bio Mater; 2021 Aug; 4(8):6112-6124. PubMed ID: 35006873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic structure of epitaxial graphene sidewall nanoribbons: flat graphene, miniribbons, and the confinement gap.
    Palacio I; Celis A; Nair MN; Gloter A; Zobelli A; Sicot M; Malterre D; Nevius MS; de Heer WA; Berger C; Conrad EH; Taleb-Ibrahimi A; Tejeda A
    Nano Lett; 2015 Jan; 15(1):182-9. PubMed ID: 25457853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of biomarkers with graphene nanoplatelets and nanoribbons.
    Lim CS; Chua CK; Pumera M
    Analyst; 2014 Mar; 139(5):1072-80. PubMed ID: 24400315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons.
    Blankenburg S; Cai J; Ruffieux P; Jaafar R; Passerone D; Feng X; Müllen K; Fasel R; Pignedoli CA
    ACS Nano; 2012 Mar; 6(3):2020-5. PubMed ID: 22324827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons.
    Sevinçli H; Sevik C; Caın T; Cuniberti G
    Sci Rep; 2013; 3():1228. PubMed ID: 23390578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine.
    Zhang Y; Petibone D; Xu Y; Mahmood M; Karmakar A; Casciano D; Ali S; Biris AS
    Drug Metab Rev; 2014 May; 46(2):232-46. PubMed ID: 24506522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene nanoribbons initiated from molecularly derived seeds.
    Way AJ; Jacobberger RM; Guisinger NP; Saraswat V; Zheng X; Suresh A; Dwyer JH; Gopalan P; Arnold MS
    Nat Commun; 2022 May; 13(1):2992. PubMed ID: 35637229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.
    Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A
    Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Transmission Electron Microscopy Modulation of Transport in Graphene Nanoribbons.
    Rodríguez-Manzo JA; Qi ZJ; Crook A; Ahn JH; Johnson AT; Drndić M
    ACS Nano; 2016 Apr; 10(4):4004-10. PubMed ID: 27010816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons.
    Tang S; Cao X
    Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deposition, characterization, and thin-film-based chemical sensing of ultra-long chemically synthesized graphene nanoribbons.
    Abbas AN; Liu G; Narita A; Orosco M; Feng X; Müllen K; Zhou C
    J Am Chem Soc; 2014 May; 136(21):7555-8. PubMed ID: 24831246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.