These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33486228)

  • 1. Production of two morphologically different antimony trioxides by a novel antimonate-reducing bacterium, Geobacter sp. SVR.
    Yamamura S; Iida C; Kobayashi Y; Watanabe M; Amachi S
    J Hazard Mater; 2021 Jun; 411():125100. PubMed ID: 33486228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of bacterial dissimilatory antimonate reductase AnrA: genes and proteins involved in antimonate respiration and resistance in
    Kambara R; Yamamura S; Amachi S
    Appl Environ Microbiol; 2024 Mar; 90(3):e0172923. PubMed ID: 38411083
    [No Abstract]   [Full Text] [Related]  

  • 3. Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism.
    Abin CA; Hollibaugh JT
    Environ Sci Technol; 2014; 48(1):681-8. PubMed ID: 24319985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete Genome Sequence of
    Warashina T; Yamamura S; Suzuki H; Amachi S; Arakawa K
    Microbiol Resour Announc; 2021 Apr; 10(14):. PubMed ID: 33833025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of antimonate from wastewater by dissimilatory bacterial reduction: Role of the coexisting sulfate.
    Zhu Y; Wu M; Gao N; Chu W; An N; Wang Q; Wang S
    J Hazard Mater; 2018 Jan; 341():36-45. PubMed ID: 28768219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimony precipitation and removal by antimony hyper resistant strain Achromobacter sp. 25-M.
    Loni PC; Wang W; Qiu X; Man B; Wu M; Qiu D; Wang H
    Environ Res; 2024 Mar; 245():118011. PubMed ID: 38141916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction pathways and Sb(III) minerals formation during the reduction of Sb(V) by Rhodoferax ferrireducens strain YZ-1.
    Zhang Y; Boyanov MI; O'Loughlin EJ; Kemner KM; Sanford RA; Kim HS; Park SC; Kwon MJ
    J Hazard Mater; 2024 Mar; 465():133240. PubMed ID: 38134691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial Reduction of Antimony(V)-Bearing Ferrihydrite by Geobacter sulfurreducens.
    Xie J; Coker VS; O'Driscoll B; Cai R; Haigh SJ; Lloyd JR
    Appl Environ Microbiol; 2023 Mar; 89(3):e0217522. PubMed ID: 36853045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of diversified Sb(V)-reducing bacterial communities by various organic or inorganic electron donors.
    Nguyen VK; Choi W; Park Y; Yu J; Lee T
    Bioresour Technol; 2018 Feb; 250():239-246. PubMed ID: 29174901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Antimonate Reducing Bacteria and Their Potential Metabolic Traits by the Combination of Stable Isotope Probing and Metagenomic-Pangenomic Analysis.
    Sun W; Sun X; Häggblom MM; Kolton M; Lan L; Li B; Dong Y; Xu R; Li F
    Environ Sci Technol; 2021 Oct; 55(20):13902-13912. PubMed ID: 34581566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and Characterization of Facultative-Anaerobic Antimonate-Reducing Bacteria.
    Yang Z; Hosokawa H; Sadakane T; Kuroda M; Inoue D; Nishikawa H; Ike M
    Microorganisms; 2020 Sep; 8(9):. PubMed ID: 32962178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced transformation of antimony trioxide by Mn(II) oxidation and their co-transformed mechanism.
    Lv Y; Zhang C; Nan C; Fan Z; Huang S
    J Environ Sci (China); 2023 Jul; 129():69-78. PubMed ID: 36804243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Draft Genome Sequence of
    Warashina T; Harada M; Nakajima N; Yamamura S; Tomita M; Suzuki H; Amachi S
    Microbiol Resour Announc; 2020 Jun; 9(26):. PubMed ID: 32586864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial antimonate reduction with a solid-state electrode as the sole electron donor: A novel approach for antimony bioremediation.
    Nguyen VK; Park Y; Lee T
    J Hazard Mater; 2019 Sep; 377():179-185. PubMed ID: 31158587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbiological oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments.
    Terry LR; Kulp TR; Wiatrowski H; Miller LG; Oremland RS
    Appl Environ Microbiol; 2015 Dec; 81(24):8478-88. PubMed ID: 26431974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic study of antimonate reduction by Escherichia coli W3110.
    Zhang L; Ye L; Yin Z; Xiao K; Jing C
    Environ Pollut; 2021 Dec; 291():118258. PubMed ID: 34606969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solubility and toxicity of antimony trioxide (Sb2O3) in soil.
    Oorts K; Smolders E; Degryse F; Buekers J; Gascó G; Cornelis G; Mertens J
    Environ Sci Technol; 2008 Jun; 42(12):4378-83. PubMed ID: 18605558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative dissolution of Sb
    Wu T; Cui P; Huang M; Liu C; Dang F; Wang Z; Alves ME; Zhou D; Wang Y
    Water Res; 2022 Jun; 217():118403. PubMed ID: 35429878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the Chemical Form of Antimony on Soil Microbial Community Structure and Arsenite Oxidation Activity.
    Kataoka T; Mitsunobu S; Hamamura N
    Microbes Environ; 2018 Jul; 33(2):214-221. PubMed ID: 29887548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting antimonate bioreduction by
    Yang Z; Sadakane T; Hosokawa H; Kuroda M; Inoue D; Ike M
    3 Biotech; 2021 Apr; 11(4):163. PubMed ID: 33786280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.