These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33486303)

  • 1. Rare earth elements recovery from secondary wastes by solid-state chlorination and selective organic leaching.
    Pavón S; Lorenz T; Fortuny A; Sastre AM; Bertau M
    Waste Manag; 2021 Mar; 122():55-63. PubMed ID: 33486303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process optimization for acidic leaching of rare earth elements (REE) from waste electrical and electronic equipment (WEEE).
    Yuksekdag A; Kose-Mutlu B; Zeytuncu-Gokoglu B; Kumral M; Wiesner MR; Koyuncu I
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):7772-7781. PubMed ID: 34476712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha.
    Hopfe S; Flemming K; Lehmann F; Möckel R; Kutschke S; Pollmann K
    Waste Manag; 2017 Apr; 62():211-221. PubMed ID: 28223076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.
    Yang F; Kubota F; Baba Y; Kamiya N; Goto M
    J Hazard Mater; 2013 Jun; 254-255():79-88. PubMed ID: 23587931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening and selection of technologically applicable microorganisms for recovery of rare earth elements from fluorescent powder.
    Hopfe S; Konsulke S; Barthen R; Lehmann F; Kutschke S; Pollmann K
    Waste Manag; 2018 Sep; 79():554-563. PubMed ID: 30343787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rare earths separation from fluorescent lamp wastes using ionic liquids as extractant agents.
    Pavón S; Fortuny A; Coll MT; Sastre AM
    Waste Manag; 2018 Dec; 82():241-248. PubMed ID: 30509586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohydrometallurgy for Rare Earth Elements Recovery from Industrial Wastes.
    Castro L; Blázquez ML; González F; Muñoz JÁ
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of rare earths from waste cathode ray tube (CRT) phosphor powder with organic and inorganic ligands.
    Alvarado-Hernández L; Lapidus GT; González F
    Waste Manag; 2019 Jul; 95():53-58. PubMed ID: 31351639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility study of fluorescent lamp waste recycling by thermal desorption.
    Esbrí JM; Rivera S; Tejero J; Higueras PL
    Environ Sci Pollut Res Int; 2021 Nov; 28(43):61860-61868. PubMed ID: 34611804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of rare earth elements from waste phosphors via alkali fusion roasting and controlled potential reduction leaching.
    Xie B; Liu C; Wei B; Wang R; Ren R
    Waste Manag; 2023 May; 163():43-51. PubMed ID: 37001311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaching of rare earth elements from phosphogypsum.
    Lütke SF; Oliveira MLS; Waechter SR; Silva LFO; Cadaval TRS; Duarte FA; Dotto GL
    Chemosphere; 2022 Aug; 301():134661. PubMed ID: 35452647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized elemental analysis of fluorescence lamp shredder waste.
    Hobohm J; Kuchta K; Krüger O; van Wasen S; Adam C
    Talanta; 2016 Jan; 147():615-20. PubMed ID: 26592653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction of rare earth Eu from waste blue phosphor strengthened by microwave alkali roasting.
    Liu C; Luo W; Li Y; Wang Z; Xu S; Wang X
    J Environ Manage; 2024 Jun; 362():121303. PubMed ID: 38824885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chelator-induced recovery of rare earths from end-of-life fluorescent lamps with the aid of mechano-chemical energy.
    Hasegawa H; Begum ZA; Murase R; Ishii K; Sawai H; Mashio AS; Maki T; Rahman IMM
    Waste Manag; 2018 Oct; 80():17-25. PubMed ID: 30454997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaching process for terbium recovery from linear tube fluorescent lamps: optimization by response surface methodology.
    Tahiri Alaoui Y; Semlali Aouragh Hassani N
    Environ Sci Pollut Res Int; 2020 Dec; 27(36):45527-45538. PubMed ID: 32797402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable and Consolidated Microbial Platform for Rare Earth Element Leaching and Recovery from Waste Sources.
    Good NM; Kang-Yun CS; Su MZ; Zytnick AM; Barber CC; Vu HN; Grace JM; Nguyen HH; Zhang W; Skovran E; Fan M; Park DM; Martinez-Gomez NC
    Environ Sci Technol; 2024 Jan; 58(1):570-579. PubMed ID: 38150661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of greener approaches for rare earth elements recovery from mineral wastes.
    Tuncay G; Yuksekdag A; Mutlu BK; Koyuncu I
    Environ Pollut; 2024 Sep; 357():124379. PubMed ID: 38885830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of metals and rare earth elements leaching from spent Ni-MH batteries by response surface methodology.
    Otron AMA; Millogo TJF; Tran LH; Blais JF
    Environ Technol; 2024 Aug; 45(20):4156-4168. PubMed ID: 37524656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green Approach for Rare Earth Element (REE) Recovery from Coal Fly Ash.
    Liu P; Zhao S; Xie N; Yang L; Wang Q; Wen Y; Chen H; Tang Y
    Environ Sci Technol; 2023 Apr; 57(13):5414-5423. PubMed ID: 36942728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of Rare Earth Elements from Acid Mine Drainage with Supported Liquid Membranes: Impacts of Feedstock Composition for Extraction Performance.
    Middleton A; Hedin BC; Hsu-Kim H
    Environ Sci Technol; 2024 Feb; 58(6):2998-3006. PubMed ID: 38287223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.