BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 33486363)

  • 1. Design of turn-on luminescent sensor based on nanostructured molecularly imprinted polymer-coated zirconium metal-organic framework for selective detection of chloramphenicol residues in milk and honey.
    Amiripour F; Ghasemi S; Azizi SN
    Food Chem; 2021 Jun; 347():129034. PubMed ID: 33486363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Turn-Off Fluorescent Biomimetic Sensor Based on a Molecularly Imprinted Polymer-Coated Amino-Functionalized Zirconium (IV) Metal-Organic Framework for the Ultrasensitive and Selective Detection of Trace Oxytetracycline in Milk.
    Wang X; Liu C; Cao Y; Cai L; Wang H; Fang G
    Foods; 2023 Jun; 12(11):. PubMed ID: 37297499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advantages of molecularly imprinted polymers LC-ESI-MS/MS for the selective extraction and quantification of chloramphenicol in milk-based matrixes. comparison with a classical sample preparation.
    Mohamed R; Richoz-Payot J; Gremaud E; Mottier P; Yilmaz E; Tabet JC; Guy PA
    Anal Chem; 2007 Dec; 79(24):9557-65. PubMed ID: 18001131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Förster resonance energy transfer-based molecularly imprinted polymer /amine-functionalized metal-organic framework nanocomposite for trace level detection of 4-nitrophenol.
    Amiripour F; Ghasemi S; Azizi SN
    Anal Chim Acta; 2022 Apr; 1202():339638. PubMed ID: 35341518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Highly Selective Electrochemical Sensor Based on Molecularly Imprinted Copolymer Functionalized with Arginine for the Detection of Chloramphenicol in Honey.
    Lai T; Shu H; Yao B; Lai S; Chen T; Xiao X; Wang Y
    Biosensors (Basel); 2023 Apr; 13(5):. PubMed ID: 37232866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of tetracyclines from milk powder by molecularly imprinted solid-phase dispersion based on a metal-organic framework followed by ultra high performance liquid chromatography with tandem mass spectrometry.
    Wang S; Zhang J; Li C; Chen L
    J Sep Sci; 2018 Jun; 41(12):2604-2612. PubMed ID: 29603650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of a molecularly imprinted polymer for the selective solid-phase extraction of chloramphenicol from honey.
    Schirmer C; Meisel H
    J Chromatogr A; 2006 Nov; 1132(1-2):325-8. PubMed ID: 17014862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel chloramphenicol sensor based on aggregation-induced electrochemiluminescence and nanozyme amplification.
    Li S; Ma X; Pang C; Wang M; Yin G; Xu Z; Li J; Luo J
    Biosens Bioelectron; 2021 Mar; 176():112944. PubMed ID: 33421761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-dots encapsulated luminescent metal-organic frameworks@surface molecularly imprinted polymer: A facile fluorescent probe for the determination of chloramphenicol.
    Pan M; Sun J; Wang Y; Yang J; Wang Z; Li L; Wang S
    Food Chem; 2024 Jun; 442():138461. PubMed ID: 38262281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Determination of chloramphenicol residues in milk powder using molecular imprinted polymers (MIP) by LC-MS/MS].
    Rodziewicz L; Zawadzka I
    Rocz Panstw Zakl Hig; 2010; 61(3):249-52. PubMed ID: 21365859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microflow chemiluminescence system for determination of chloramphenicol in honey with preconcentration using a molecularly imprinted polymer.
    Thongchai W; Liawruangath B; Liawruangrath S; Greenway GM
    Talanta; 2010 Jul; 82(2):560-6. PubMed ID: 20602936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic molecularly imprinted polymer extraction of chloramphenicol from honey.
    Chen L; Li B
    Food Chem; 2013 Nov; 141(1):23-8. PubMed ID: 23768321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid multi-class multi-residue method for the confirmation of chloramphenicol and eleven nitroimidazoles in milk and honey by liquid chromatography-tandem mass spectrometry (LC-MS).
    Cronly M; Behan P; Foley B; Malone E; Martin S; Doyle M; Regan L
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 Sep; 27(9):1233-46. PubMed ID: 20597022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and quantification of chloramphenicol in milk and honey using molecularly imprinted polymers: Canadian penny-based SERS nano-biosensor.
    Gao F; Feng S; Chen Z; Li-Chan EC; Grant E; Lu X
    J Food Sci; 2014 Dec; 79(12):N2542-9. PubMed ID: 25393060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective analysis of chloramphenicol residues in honey samples by chiral LC-MS/MS and results of a honey survey.
    Rimkus GG; Hoffmann D
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Jun; 34(6):950-961. PubMed ID: 28406359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly selective solid-phase extraction sorbents for chloramphenicol determination in food and urine by ion mobility spectrometry.
    Armenta S; de la Guardia M; Abad-Fuentes A; Abad-Somovilla A; Esteve-Turrillas FA
    Anal Bioanal Chem; 2016 Nov; 408(29):8559-8567. PubMed ID: 27734138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-walled carbon nanotubes as solid-phase extraction adsorbent for the ultra-fast determination of chloramphenicol in egg, honey, and milk by fused-core C18-based high-performance liquid chromatography-tandem mass spectrometry.
    Lu Y; Shen Q; Dai Z; Zhang H
    Anal Bioanal Chem; 2010 Oct; 398(4):1819-26. PubMed ID: 20737139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive analysis of trace macrolide antibiotics in complex food samples by ambient mass spectrometry with molecularly imprinted polymer-coated wooden tips.
    Liu Y; Yang Q; Chen X; Song Y; Wu Q; Yang Y; He L
    Talanta; 2019 Nov; 204():238-247. PubMed ID: 31357288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatographic evaluation of polymers imprinted with analogs of chloramphenicol and application to selective solid-phase extraction.
    Schirmer C; Meisel H
    Anal Bioanal Chem; 2009 Aug; 394(8):2249-55. PubMed ID: 19575191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunoaffinity column cleanup with LC/MS/MS for the determination of chloramphenicol in honey and prawns: single-laboratory validation.
    Mackie J; Marley E; Donnelly C
    J AOAC Int; 2013; 96(4):910-6. PubMed ID: 24000768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.