These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 33486368)
1. 3D deep learning based classification of pulmonary ground glass opacity nodules with automatic segmentation. Wang D; Zhang T; Li M; Bueno R; Jayender J Comput Med Imaging Graph; 2021 Mar; 88():101814. PubMed ID: 33486368 [TBL] [Abstract][Full Text] [Related]
2. Lung-PNet: An Automated Deep Learning Model for the Diagnosis of Invasive Adenocarcinoma in Pure Ground-Glass Nodules on Chest CT. Qi K; Wang K; Wang X; Zhang YD; Lin G; Zhang X; Liu H; Huang W; Wu J; Zhao K; Liu J; Li J; Zhang X AJR Am J Roentgenol; 2024 Jan; 222(1):e2329674. PubMed ID: 37493322 [No Abstract] [Full Text] [Related]
3. Feature-shared adaptive-boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images. Wang J; Chen X; Lu H; Zhang L; Pan J; Bao Y; Su J; Qian D Med Phys; 2020 Apr; 47(4):1738-1749. PubMed ID: 32020649 [TBL] [Abstract][Full Text] [Related]
4. Predicting the invasiveness of lung adenocarcinomas appearing as ground-glass nodule on CT scan using multi-task learning and deep radiomics. Wang X; Li Q; Cai J; Wang W; Xu P; Zhang Y; Fang Q; Fu C; Fan L; Xiao Y; Liu S Transl Lung Cancer Res; 2020 Aug; 9(4):1397-1406. PubMed ID: 32953512 [TBL] [Abstract][Full Text] [Related]
5. Determining the invasiveness of ground-glass nodules using a 3D multi-task network. Yu Y; Wang N; Huang N; Liu X; Zheng Y; Fu Y; Li X; Wu H; Xu J; Cheng J Eur Radiol; 2021 Sep; 31(9):7162-7171. PubMed ID: 33665717 [TBL] [Abstract][Full Text] [Related]
6. CT-Assisted Improvements in the Accuracy of the Intraoperative Frozen Section Examination of Ground-Glass Density Nodules. Xinli W; Xiaoshuang S; Chengxin Y; Qiang Z Comput Math Methods Med; 2022; 2022():8967643. PubMed ID: 35035526 [TBL] [Abstract][Full Text] [Related]
7. 3D Deep Learning from CT Scans Predicts Tumor Invasiveness of Subcentimeter Pulmonary Adenocarcinomas. Zhao W; Yang J; Sun Y; Li C; Wu W; Jin L; Yang Z; Ni B; Gao P; Wang P; Hua Y; Li M Cancer Res; 2018 Dec; 78(24):6881-6889. PubMed ID: 30279243 [TBL] [Abstract][Full Text] [Related]
8. A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images. Gong J; Liu J; Hao W; Nie S; Zheng B; Wang S; Peng W Eur Radiol; 2020 Apr; 30(4):1847-1855. PubMed ID: 31811427 [TBL] [Abstract][Full Text] [Related]
9. [Growth Regularity of Pulmonary Ground Glass Nodules Based on 3D Reconstruction Technology]. Zhou Y; Zhang Y; Zhang S; Zhang C; Chen Z Zhongguo Fei Ai Za Zhi; 2023 Apr; 26(4):265-273. PubMed ID: 37183641 [TBL] [Abstract][Full Text] [Related]
10. Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features. Hu X; Gong J; Zhou W; Li H; Wang S; Wei M; Peng W; Gu Y Phys Med Biol; 2021 Mar; 66(6):065015. PubMed ID: 33596552 [TBL] [Abstract][Full Text] [Related]
11. Computer-Aided Diagnosis of Ground-Glass Opacity Nodules Using Open-Source Software for Quantifying Tumor Heterogeneity. Li M; Narayan V; Gill RR; Jagannathan JP; Barile MF; Gao F; Bueno R; Jayender J AJR Am J Roentgenol; 2017 Dec; 209(6):1216-1227. PubMed ID: 29045176 [TBL] [Abstract][Full Text] [Related]
12. A triple-classification for the evaluation of lung nodules manifesting as pure ground-glass sign: a CT-based radiomic analysis. Yu Z; Xu C; Zhang Y; Ji F BMC Med Imaging; 2022 Jul; 22(1):133. PubMed ID: 35896975 [TBL] [Abstract][Full Text] [Related]
13. Fusion of CT images and clinical variables based on deep learning for predicting invasiveness risk of stage I lung adenocarcinoma. Huang H; Zheng D; Chen H; Wang Y; Chen C; Xu L; Li G; Wang Y; He X; Li W Med Phys; 2022 Oct; 49(10):6384-6394. PubMed ID: 35938604 [TBL] [Abstract][Full Text] [Related]
14. CT features and quantitative analysis of subsolid nodule lung adenocarcinoma for pathological classification prediction. Li X; Zhang W; Yu Y; Zhang G; Zhou L; Wu Z; Liu B BMC Cancer; 2020 Jan; 20(1):60. PubMed ID: 31992239 [TBL] [Abstract][Full Text] [Related]
15. Predicting invasion in early-stage ground-glass opacity pulmonary adenocarcinoma: a radiomics-based machine learning approach. Bin J; Wu M; Huang M; Liao Y; Yang Y; Shi X; Tao S BMC Med Imaging; 2024 Sep; 24(1):240. PubMed ID: 39272029 [TBL] [Abstract][Full Text] [Related]
16. HRCT texture analysis for pure or part-solid ground-glass nodules: distinguishability of adenocarcinoma in situ or minimally invasive adenocarcinoma from invasive adenocarcinoma. Yagi T; Yamazaki M; Ohashi R; Ogawa R; Ishikawa H; Yoshimura N; Tsuchida M; Ajioka Y; Aoyama H Jpn J Radiol; 2018 Feb; 36(2):113-121. PubMed ID: 29273964 [TBL] [Abstract][Full Text] [Related]
17. [CT diagnosis of different pathological types of ground-glass nodules]. Gao F; Ge XJ; Li M; Chen Y; Lyu F; Hua Y; Ren Q; Qi L Zhonghua Zhong Liu Za Zhi; 2014 Mar; 36(3):188-92. PubMed ID: 24785278 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the invasiveness of pure ground-glass nodules based on dual-head ResNet technique. Yang D; Yang Y; Zhao M; Ji H; Niu Z; Hong B; Shi H; He L; Shao M; Wang J BMC Cancer; 2024 Sep; 24(1):1080. PubMed ID: 39223592 [TBL] [Abstract][Full Text] [Related]
19. Correlation Analysis of Computed Tomography Features and Pathological Types of Multifocal Ground-Glass Nodular Lung Adenocarcinoma. Kou J; Gu X; Kang L Comput Math Methods Med; 2022; 2022():7267036. PubMed ID: 35928980 [TBL] [Abstract][Full Text] [Related]
20. Morphological factors differentiating between early lung adenocarcinomas appearing as pure ground-glass nodules measuring ≤10 mm on thin-section computed tomography. Xiang W; Xing Y; Jiang S; Chen G; Mao H; Labh K; Jia X; Sun X Cancer Imaging; 2014 Nov; 14(1):33. PubMed ID: 25608623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]