BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33487353)

  • 21. Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.).
    Peng Z; Gallo M; Tillman BL; Rowland D; Wang J
    Mol Genet Genomics; 2016 Feb; 291(1):363-81. PubMed ID: 26362763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of candidate genes responsible for the susceptibility of apple (Malus × domestica Borkh.) to Alternaria blotch.
    Moriya S; Terakami S; Okada K; Shimizu T; Adachi Y; Katayose Y; Fujisawa H; Wu J; Kanamori H; Yamamoto T; Abe K
    BMC Plant Biol; 2019 Apr; 19(1):132. PubMed ID: 30961541
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Population Structure and Association Mapping for Agronomical and Biochemical Traits of a Large Spanish Apple Germplasm.
    Mignard P; Font I Forcada C; Giménez R; Moreno MÁ
    Plants (Basel); 2023 Mar; 12(6):. PubMed ID: 36986937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-quality, genome-wide SNP genotypic data for pedigreed germplasm of the diploid outbreeding species apple, peach, and sweet cherry through a common workflow.
    Vanderzande S; Howard NP; Cai L; Da Silva Linge C; Antanaviciute L; Bink MCAM; Kruisselbrink JW; Bassil N; Gasic K; Iezzoni A; Van de Weg E; Peace C
    PLoS One; 2019; 14(6):e0210928. PubMed ID: 31246947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Susceptibility of fruit from diverse apple and crabapple germplasm to attack from apple maggot (Diptera: Tephritidae).
    Myers CT; Reissig WH; Forsline PL
    J Econ Entomol; 2008 Feb; 101(1):206-15. PubMed ID: 18330137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cloning and linkage mapping of resistance gene homologues in apple.
    Baldi P; Patocchi A; Zini E; Toller C; Velasco R; Komjanc M
    Theor Appl Genet; 2004 Jun; 109(1):231-9. PubMed ID: 15052401
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic structure of Malus sieversii population from Xinjiang, China, revealed by SSR markers.
    Zhang C; Chen X; He T; Liu X; Feng T; Yuan Z
    J Genet Genomics; 2007 Oct; 34(10):947-55. PubMed ID: 17945173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiplex-Ready Technology for mid-throughput genotyping of molecular markers.
    Bonneau J; Hayden M
    Methods Mol Biol; 2014; 1145():47-57. PubMed ID: 24816658
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii.
    Gygax M; Gianfranceschi L; Liebhard R; Kellerhals M; Gessler C; Patocchi A
    Theor Appl Genet; 2004 Nov; 109(8):1702-9. PubMed ID: 15365630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of ascorbic acid content in apple (Malus x domestica) during fruit development and storage.
    Lemmens E; Alós E; Rymenants M; De Storme N; Keulemans WJ
    Plant Physiol Biochem; 2020 Jun; 151():47-59. PubMed ID: 32197136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and linkage mapping of E-STS and RGA markers for functional gene homologues in apple.
    Naik S; Hampson C; Gasic K; Bakkeren G; Korban SS
    Genome; 2006 Aug; 49(8):959-68. PubMed ID: 17036071
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Update on comparative genome mapping between Malus and Pyrus.
    Celton JM; Chagné D; Tustin SD; Terakami S; Nishitani C; Yamamoto T; Gardiner SE
    BMC Res Notes; 2009 Sep; 2():182. PubMed ID: 19747407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integration of BpMADS4 on various linkage groups improves the utilization of the rapid cycle breeding system in apple.
    Weigl K; Wenzel S; Flachowsky H; Peil A; Hanke MV
    Plant Biotechnol J; 2015 Feb; 13(2):246-58. PubMed ID: 25370729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The distribution and impact of common copy-number variation in the genome of the domesticated apple, Malus x domestica Borkh.
    Boocock J; Chagné D; Merriman TR; Black MA
    BMC Genomics; 2015 Oct; 16():848. PubMed ID: 26493398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic diversity of selected Iranian quinces using SSRs from apples and pears.
    Khoramdel Azad M; Nasiri J; Abdollahi H
    Biochem Genet; 2013 Jun; 51(5-6):426-42. PubMed ID: 23430114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRYOTHERAPY AS A METHOD FOR REDUCING THE VIRUS INFECTION OF APPLES (Malus sp.).
    Romadanova NV; Mishustina SA; Gritsenko Di; Omasheva MY; Galiakparov NN; Reed BM; Kushnarenko SV
    Cryo Letters; 2016; 37(1):1-9. PubMed ID: 26964019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a reliable Corylus sp. reference database through the implementation of a DNA fingerprinting test.
    Freixas-Coutin JA; An S; Postman J; Bassil NV; Yates B; Shukla M; Saxena PK
    Planta; 2019 Jun; 249(6):1863-1874. PubMed ID: 30859306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Mapping of apple Co gene using SSR markers].
    Tian YK; Wang CH; Dai HY
    Shi Yan Sheng Wu Xue Bao; 2005 Jun; 38(3):272-5. PubMed ID: 16044922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification by genome scanning approach (GSA) of a microsatellite tightly associated with the apple scab resistance gene Vm.
    Patocchi A; Walser M; Tartarini S; Broggini GA; Gennari F; Sansavini S; Gessler C
    Genome; 2005 Aug; 48(4):630-6. PubMed ID: 16094431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A and MdMYB1 allele-specific markers controlling apple (Malus x domestica Borkh.) skin color and suitability for marker-assisted selection.
    Zhang XJ; Wang LX; Chen XX; Liu YL; Meng R; Wang YJ; Zhao ZY
    Genet Mol Res; 2014 Oct; 13(4):9103-14. PubMed ID: 25366802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.