These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Microphase separation patterns in diblock copolymers on curved surfaces using a nonlocal Cahn-Hilliard equation. Jeong D; Kim J Eur Phys J E Soft Matter; 2015 Nov; 38(11):117. PubMed ID: 26577816 [TBL] [Abstract][Full Text] [Related]
3. Mixed variational potentials and inherent symmetries of the Cahn-Hilliard theory of diffusive phase separation. Miehe C; Hildebrand FE; Böger L Proc Math Phys Eng Sci; 2014 Apr; 470(2164):20130641. PubMed ID: 24711722 [TBL] [Abstract][Full Text] [Related]
4. On the image inpainting problem from the viewpoint of a nonlocal Cahn-Hilliard type equation. Brkić AL; Mitrović D; Novak A J Adv Res; 2020 Sep; 25():67-76. PubMed ID: 32922975 [TBL] [Abstract][Full Text] [Related]
5. Analysis and Optimal Velocity Control of a Stochastic Convective Cahn-Hilliard Equation. Scarpa L J Nonlinear Sci; 2021; 31(2):45. PubMed ID: 34720441 [TBL] [Abstract][Full Text] [Related]
7. Comparative study of the lattice Boltzmann models for Allen-Cahn and Cahn-Hilliard equations. Wang HL; Chai ZH; Shi BC; Liang H Phys Rev E; 2016 Sep; 94(3-1):033304. PubMed ID: 27739765 [TBL] [Abstract][Full Text] [Related]
8. Cahn-Hilliard equations incorporating elasticity: analysis and comparison to experiments. Blesgen T; Chenchiah IV Philos Trans A Math Phys Eng Sci; 2013 Dec; 371(2005):20120342. PubMed ID: 24249770 [TBL] [Abstract][Full Text] [Related]
9. Efficient numerical approaches with accelerated graphics processing unit (GPU) computations for Poisson problems and Cahn-Hilliard equations. Orizaga S; Fabien M; Millard M AIMS Math; 2024; 9(10):27471-27496. PubMed ID: 39391269 [TBL] [Abstract][Full Text] [Related]
10. Singular boundary behaviour and large solutions for fractional elliptic equations. Abatangelo N; Gómez-Castro D; Vázquez JL J Lond Math Soc; 2023 Feb; 107(2):568-615. PubMed ID: 37082743 [TBL] [Abstract][Full Text] [Related]
11. POSTPROCESSING MIXED FINITE ELEMENT METHODS FOR SOLVING CAHN-HILLIARD EQUATION: METHODS AND ERROR ANALYSIS. Wang W; Chen L; Zhou J J Sci Comput; 2016 May; 67(2):724-746. PubMed ID: 27110063 [TBL] [Abstract][Full Text] [Related]
12. Existence results of fractional differential equations with nonlocal double-integral boundary conditions. Yan D Math Biosci Eng; 2023 Jan; 20(3):4437-4454. PubMed ID: 36896507 [TBL] [Abstract][Full Text] [Related]
13. Nonlinear relaxation patterns in the Cahn-Hilliard equation: an exact solution. Mitlin V J Colloid Interface Sci; 2006 May; 297(2):840-4. PubMed ID: 16332371 [TBL] [Abstract][Full Text] [Related]
14. Homogeneous nucleation: classical formulas as asymptotic limits of the Cahn-Hilliard approach. Parra IE; Cordero-Gracia M; Gómez M J Chem Phys; 2007 Feb; 126(5):054512. PubMed ID: 17302490 [TBL] [Abstract][Full Text] [Related]
15. The mu-derivative and its applications to finding exact solutions of the Cahn-Hilliard, Korteveg-de Vries, and Burgers equations. Mitlin V J Colloid Interface Sci; 2005 Oct; 290(2):310-7. PubMed ID: 16112129 [TBL] [Abstract][Full Text] [Related]
16. Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations. Vorobev A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056312. PubMed ID: 21230581 [TBL] [Abstract][Full Text] [Related]
17. Analysis of Coupled Reaction-Diffusion Equations for RNA Interactions. Hohn ME; Li B; Yang W J Math Anal Appl; 2015 May; 425(1):212-233. PubMed ID: 25601722 [TBL] [Abstract][Full Text] [Related]
18. Exact solutions for the Cahn-Hilliard equation in terms of Weierstrass-elliptic and Jacobi-elliptic functions. Hussain A; Ibrahim TF; Birkea FMO; Alotaibi AM; Al-Sinan BR; Mukalazi H Sci Rep; 2024 Jun; 14(1):13100. PubMed ID: 38849360 [TBL] [Abstract][Full Text] [Related]
19. Some classes of singular integral equations of convolution type in the class of exponentially increasing functions. Li P J Inequal Appl; 2017; 2017(1):307. PubMed ID: 29263638 [TBL] [Abstract][Full Text] [Related]
20. Parallel splitting solvers for the isogeometric analysis of the Cahn-Hilliard equation. Puzyrev V; Łoś M; Gurgul G; Calo V; Dzwinel W; Paszyński M Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1269-1281. PubMed ID: 31498000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]