These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 33488181)
1. Mesoporous starch aerogels production as drug delivery matrices: synthesis optimization, ibuprofen loading, and release property. Mohammadi A; Moghaddas J Turk J Chem; 2020; 44(3):614-633. PubMed ID: 33488181 [TBL] [Abstract][Full Text] [Related]
2. Investigation of Carrageenan Aerogel Microparticles as a Potential Drug Carrier. Obaidat RM; Alnaief M; Mashaqbeh H AAPS PharmSciTech; 2018 Jul; 19(5):2226-2236. PubMed ID: 29736886 [TBL] [Abstract][Full Text] [Related]
3. Supercritical impregnation of starch aerogels with quercetin: Fungistatic effect and release modelling with a compartmental model. Mottola S; Iannone G; Giordano M; González-Garcinuño Á; Jiménez A; Tabernero A; Martín Del Valle E; De Marco I Int J Biol Macromol; 2023 Dec; 253(Pt 6):127406. PubMed ID: 37832612 [TBL] [Abstract][Full Text] [Related]
4. Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. Veres P; López-Periago AM; Lázár I; Saurina J; Domingo C Int J Pharm; 2015 Dec; 496(2):360-70. PubMed ID: 26484894 [TBL] [Abstract][Full Text] [Related]
5. Polysaccharide-based aerogel microspheres for oral drug delivery. García-González CA; Jin M; Gerth J; Alvarez-Lorenzo C; Smirnova I Carbohydr Polym; 2015 Mar; 117():797-806. PubMed ID: 25498702 [TBL] [Abstract][Full Text] [Related]
6. Modifying release of poorly soluble active pharmaceutical ingredients with the amine functionalized SBA-16 type mesoporous materials. Jadach B; Feliczak-Guzik A; Nowak I; Milanowski B; Piotrowska-Kempisty H; Murias M; Lulek J J Biomater Appl; 2019 Apr; 33(9):1214-1231. PubMed ID: 30791849 [TBL] [Abstract][Full Text] [Related]
7. A novel strategy to design sustained-release poorly water-soluble drug mesoporous silica microparticles based on supercritical fluid technique. Li-Hong W; Xin C; Hui X; Li-Li Z; Jing H; Mei-Juan Z; Jie L; Yi L; Jin-Wen L; Wei Z; Gang C Int J Pharm; 2013 Sep; 454(1):135-42. PubMed ID: 23871738 [TBL] [Abstract][Full Text] [Related]
8. Gelatin content governs hydration induced structural changes in silica-gelatin hybrid aerogels - Implications in drug delivery. Kéri M; Forgács A; Papp V; Bányai I; Veres P; Len A; Dudás Z; Fábián I; Kalmár J Acta Biomater; 2020 Mar; 105():131-145. PubMed ID: 31953196 [TBL] [Abstract][Full Text] [Related]
9. Alginate-Based Aerogel Particles as Drug Delivery Systems: Investigation of the Supercritical Adsorption and In Vitro Evaluations. Lovskaya D; Menshutina N Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936834 [TBL] [Abstract][Full Text] [Related]
10. Aerogels in drug delivery: From design to application. García-González CA; Sosnik A; Kalmár J; De Marco I; Erkey C; Concheiro A; Alvarez-Lorenzo C J Control Release; 2021 Apr; 332():40-63. PubMed ID: 33600880 [TBL] [Abstract][Full Text] [Related]
11. Tuning bio-aerogel properties for controlling theophylline delivery. Part 1: Pectin aerogels. Groult S; Buwalda S; Budtova T Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112148. PubMed ID: 34082959 [TBL] [Abstract][Full Text] [Related]
12. Investigating the Effects of Loading Factors on the In Vitro Pharmaceutical Performance of Mesoporous Materials as Drug Carriers for Ibuprofen. Lai J; Lin W; Scholes P; Li M Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772509 [TBL] [Abstract][Full Text] [Related]
13. Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. Charnay C; Bégu S; Tourné-Péteilh C; Nicole L; Lerner DA; Devoisselle JM Eur J Pharm Biopharm; 2004 May; 57(3):533-40. PubMed ID: 15093603 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of mesoporous carbon aerogels as carriers of the non-steroidal anti-inflammatory drug ibuprofen. Eleftheriadis GK; Filippousi M; Tsachouridou V; Darda MA; Sygellou L; Kontopoulou I; Bouropoulos N; Steriotis T; Charalambopoulou G; Vizirianakis IS; Van Tendeloo G; Fatouros DG Int J Pharm; 2016 Dec; 515(1-2):262-270. PubMed ID: 27717918 [TBL] [Abstract][Full Text] [Related]
15. Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Smirnova I; Suttiruengwong S; Seiler M; Arlt W Pharm Dev Technol; 2004 Nov; 9(4):443-52. PubMed ID: 15581080 [TBL] [Abstract][Full Text] [Related]
16. Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Gonçalves VS; Gurikov P; Poejo J; Matias AA; Heinrich S; Duarte CM; Smirnova I Eur J Pharm Biopharm; 2016 Oct; 107():160-70. PubMed ID: 27393563 [TBL] [Abstract][Full Text] [Related]
17. Mesochanneled hierarchically porous aluminosiloxane aerogel microspheres as a stable support for pH-responsive controlled drug release. Vazhayal L; Talasila S; Abdul Azeez PM; Solaiappan A ACS Appl Mater Interfaces; 2014 Sep; 6(17):15564-74. PubMed ID: 25130541 [TBL] [Abstract][Full Text] [Related]
18. Increasing the bioavailability of curcumin using a green supercritical fluid technology-assisted approach based on simultaneous starch aerogel formation-curcumin impregnation. Alavi F; Ciftci ON Food Chem; 2024 Oct; 455():139468. PubMed ID: 38850979 [TBL] [Abstract][Full Text] [Related]
19. Green and single-step simultaneous composite starch aerogel formation-high bioavailability curcumin particle formation. Alavi F; Ciftci ON Int J Biol Macromol; 2024 Apr; 264(Pt 1):129945. PubMed ID: 38311127 [TBL] [Abstract][Full Text] [Related]
20. Hydrophilic and Hydrophobic Mesoporous Silica Derived from Rice Husk Ash as a Potential Drug Carrier. Suttiruengwong S; Pivsa-Art S; Chareonpanich M Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29976886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]