BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33488218)

  • 1. A comparative study on the monovalent and divalent cation separation of polymeric films and membranes from salt solutions under diffusion-dialysis.
    Acar S; Cengİz HY; ErgÜn A; Konyali E; DelİgÖz H
    Turk J Chem; 2020; 44(4):1134-1147. PubMed ID: 33488218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration.
    Van der Bruggen B; Koninckx A; Vandecasteele C
    Water Res; 2004 Mar; 38(5):1347-53. PubMed ID: 14975668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rejection Capacity of Nanofiltration Membranes for Nickel, Copper, Silver and Palladium at Various Oxidation States.
    Thabo B; Okoli BJ; Modise SJ; Nelana S
    Membranes (Basel); 2021 Aug; 11(9):. PubMed ID: 34564470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Selective Separation Mechanism for Mono/divalent Cations and Properties of a Hollow-Fiber Composite Nanofiltration Membrane Having a Positively Charged Surface.
    Wang E; Lv X; Liu S; Dong Q; Li J; Li H; Su B
    Membranes (Basel); 2023 Dec; 14(1):. PubMed ID: 38276314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing the performance of various nanofiltration membranes in advanced oxidation-nanofiltration treatment of reverse osmosis concentrates.
    Li N; Wang X; Zhang H; Zhang Z; Ding J; Lu J
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17472-17481. PubMed ID: 31020525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-Situ Modification of Nanofiltration Membranes Using Carbon Nanotubes for Water Treatment.
    Vargas-Figueroa C; Pino-Soto L; Beratto-Ramos A; Tapiero Y; Rivas BL; Berrio ME; Melendrez MF; Bórquez RM
    Membranes (Basel); 2023 Jun; 13(7):. PubMed ID: 37504982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamentals of selective ion transport through multilayer polyelectrolyte membranes.
    Cheng C; Yaroshchuk A; Bruening ML
    Langmuir; 2013 Feb; 29(6):1885-92. PubMed ID: 23317152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single and binary ion sorption equilibria of monovalent and divalent ions in commercial ion exchange membranes.
    Chen GQ; Wei K; Hassanvand A; Freeman BD; Kentish SE
    Water Res; 2020 May; 175():115681. PubMed ID: 32171098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.
    Talaeipour M; Nouri J; Hassani AH; Mahvi AH
    J Environ Health Sci Eng; 2017; 15():18. PubMed ID: 28736617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Selected Polymeric Membranes Used in the Separation and Recovery of Palladium-Based Catalyst Systems.
    Xaba BM; Modise SJ; Okoli BJ; Monapathi ME; Nelana S
    Membranes (Basel); 2020 Jul; 10(8):. PubMed ID: 32731324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusivity of Mono- and Divalent Salts and Water in Polyelectrolyte Desalination Membranes.
    Aryal D; Ganesan V
    J Phys Chem B; 2018 Aug; 122(33):8098-8110. PubMed ID: 30106583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of monovalent cation identity on parvalbumin divalent ion-binding properties.
    Henzl MT; Larson JD; Agah S
    Biochemistry; 2004 Mar; 43(10):2747-63. PubMed ID: 15005610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of antibiotics and estrogens by nanofiltration and reverse osmosis membranes.
    Yang L; Xia C; Jiang J; Chen X; Zhou Y; Yuan C; Bai L; Meng S; Cao G
    J Hazard Mater; 2024 Jan; 461():132628. PubMed ID: 37783143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the Mg
    Li T; Liu Y; Srinivasakannan C; Jiang X; Zhang N; Zhou G; Yin S; Li S; Zhang L
    Membranes (Basel); 2023 Aug; 13(9):. PubMed ID: 37755175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tannery Effluent Treatment by Nanofiltration, Reverse Osmosis and Chitosan Modified Membranes.
    Zakmout A; Sadi F; Portugal CAM; Crespo JG; Velizarov S
    Membranes (Basel); 2020 Nov; 10(12):. PubMed ID: 33260505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus removal using nanofiltration membranes.
    Leo CP; Chai WK; Mohammad AW; Qi Y; Hoedley AF; Chai SP
    Water Sci Technol; 2011; 64(1):199-205. PubMed ID: 22053475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of calcium ions on the removal of haloacetic acids from swimming pool water by nanofiltration: mechanisms and implications.
    Yang L; Zhou J; She Q; Wan MP; Wang R; Chang VW; Tang CY
    Water Res; 2017 Mar; 110():332-341. PubMed ID: 28063295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nanofiltration membrane prepared by PDA-C
    Bi Q; Zhang C; Liu J; Cheng Q; Xu S
    Water Sci Technol; 2020 Jan; 81(2):253-264. PubMed ID: 32333658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positively Charged Polyamine Nanofiltration Membrane for Precise Ion-Ion Separation.
    Zhao Z; Di N; Zha Z; Wang J; Wang Z; Zhao S
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48695-48704. PubMed ID: 37796665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resource recovery from RO concentrate using nanofiltration: Impact of active layer thickness on performance.
    Du Y; Pramanik BK; Zhang Y; Jegatheesan V
    Environ Res; 2023 Aug; 231(Pt 3):116265. PubMed ID: 37263466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.