BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33488537)

  • 21. Catalytic promiscuity in dihydroxy-acid dehydratase from the thermoacidophilic archaeon Sulfolobus solfataricus.
    Kim S; Lee SB
    J Biochem; 2006 Mar; 139(3):591-6. PubMed ID: 16567425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new type of dihydroorotate dehydrogenase, type 1S, from the thermoacidophilic archaeon Sulfolobus solfataricus.
    Sørensen G; Dandanell G
    Extremophiles; 2002 Jun; 6(3):245-51. PubMed ID: 12072960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenol degradation by yeasts isolated from industrial effluents.
    Santos VL; Linardi VR
    J Gen Appl Microbiol; 2001 Aug; 47(4):213-221. PubMed ID: 12483621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phenol degradation by immobilized cells of Arthrobacter citreus.
    Karigar C; Mahesh A; Nagenahalli M; Yun DJ
    Biodegradation; 2006 Feb; 17(1):47-55. PubMed ID: 16453171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A cool tool for hot and sour Archaea: proteomics of Sulfolobus solfataricus.
    Kort JC; Esser D; Pham TK; Noirel J; Wright PC; Siebers B
    Proteomics; 2013 Oct; 13(18-19):2831-50. PubMed ID: 23894103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. "Hot standards" for the thermoacidophilic archaeon Sulfolobus solfataricus.
    Zaparty M; Esser D; Gertig S; Haferkamp P; Kouril T; Manica A; Pham TK; Reimann J; Schreiber K; Sierocinski P; Teichmann D; van Wolferen M; von Jan M; Wieloch P; Albers SV; Driessen AJ; Klenk HP; Schleper C; Schomburg D; van der Oost J; Wright PC; Siebers B
    Extremophiles; 2010 Jan; 14(1):119-42. PubMed ID: 19802714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Statistical Optimisation of Phenol Degradation and Pathway Identification through Whole Genome Sequencing of the Cold-Adapted Antarctic Bacterium,
    Lee GLY; Zakaria NN; Convey P; Futamata H; Zulkharnain A; Suzuki K; Abdul Khalil K; Shaharuddin NA; Alias SA; González-Rocha G; Ahmad SA
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33316871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative analysis of the catechol 2,3-dioxygenase gene locus in thermoacidophilic archaeon Sulfolobus solfataricus strain 98/2.
    Chae JC; Kim E; Bini E; Zylstra GJ
    Biochem Biophys Res Commun; 2007 Jun; 357(3):815-9. PubMed ID: 17451650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glucose transport in the extremely thermoacidophilic Sulfolobus solfataricus involves a high-affinity membrane-integrated binding protein.
    Albers SV; Elferink MG; Charlebois RL; Sensen CW; Driessen AJ; Konings WN
    J Bacteriol; 1999 Jul; 181(14):4285-91. PubMed ID: 10400586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a novel alpha-galactosidase from the hyperthermophilic archaeon Sulfolobus solfataricus.
    Brouns SJ; Smits N; Wu H; Snijders AP; Wright PC; de Vos WM; van der Oost J
    J Bacteriol; 2006 Apr; 188(7):2392-9. PubMed ID: 16547025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus.
    De Rosa M; Gambacorta A; Nicolaus B; Giardina P; Poerio E; Buonocore V
    Biochem J; 1984 Dec; 224(2):407-14. PubMed ID: 6440533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic metabolic adjustments and genome plasticity are implicated in the heat shock response of the extremely thermoacidophilic archaeon Sulfolobus solfataricus.
    Tachdjian S; Kelly RM
    J Bacteriol; 2006 Jun; 188(12):4553-9. PubMed ID: 16740961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodegradation of phenol by Chlamydomonas reinhardtii.
    Nazos TT; Mavroudakis L; Pergantis SA; Ghanotakis DF
    Photosynth Res; 2020 Jun; 144(3):383-395. PubMed ID: 32358649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hyperthermophilic flavin reductase from Sulfolobus solfataricus P2: Production and biochemical characterization.
    Gun G; Imamoglu R; Tatli O; Yurum Y; Tarik Baykal A; Dinler-Doganay G
    Biotechnol Appl Biochem; 2019 Nov; 66(6):915-923. PubMed ID: 31396993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GlcNAc De-
    Iacono R; Strazzulli A; Maurelli L; Curci N; Casillo A; Corsaro MM; Moracci M; Cobucci-Ponzano B
    Appl Environ Microbiol; 2019 Jan; 85(2):. PubMed ID: 30446550
    [No Abstract]   [Full Text] [Related]  

  • 36. A carboxylesterase from the thermoacidophilic archaeon Sulfolobus solfataricus P1; purification, characterization, and expression.
    Park YJ; Choi SY; Lee HB
    Biochim Biophys Acta; 2006 May; 1760(5):820-8. PubMed ID: 16574328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity.
    Alva VA; Peyton BM
    Environ Sci Technol; 2003 Oct; 37(19):4397-402. PubMed ID: 14572091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenol degradation by Aureobasidium pullulans FE13 isolated from industrial effluents.
    Dos Santos VL; Monteiro Ade S; Braga DT; Santoro MM
    J Hazard Mater; 2009 Jan; 161(2-3):1413-20. PubMed ID: 18541369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. (S)-2,3-Di-O-geranylgeranylglyceryl phosphate synthase from the thermoacidophilic archaeon Sulfolobus solfataricus. Molecular cloning and characterization of a membrane-intrinsic prenyltransferase involved in the biosynthesis of archaeal ether-linked membrane lipids.
    Hemmi H; Shibuya K; Takahashi Y; Nakayama T; Nishino T
    J Biol Chem; 2004 Nov; 279(48):50197-203. PubMed ID: 15356000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenol degradation and genotypic analysis of dioxygenase genes in bacteria isolated from sediments.
    Tian M; Du D; Zhou W; Zeng X; Cheng G
    Braz J Microbiol; 2017; 48(2):305-313. PubMed ID: 28065387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.