These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33488764)

  • 21. PCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike Moments Descriptor to Predict Protein-Protein Interactions from Protein Sequences.
    Wang Y; You Z; Li X; Chen X; Jiang T; Zhang J
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28492483
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reviewing ensemble classification methods in breast cancer.
    Hosni M; Abnane I; Idri A; Carrillo de Gea JM; Fernández Alemán JL
    Comput Methods Programs Biomed; 2019 Aug; 177():89-112. PubMed ID: 31319964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic networks are NP-hard to reconstruct.
    Nikoloski Z; Grimbs S; May P; Selbig J
    J Theor Biol; 2008 Oct; 254(4):807-16. PubMed ID: 18682254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supervised de novo reconstruction of metabolic pathways from metabolome-scale compound sets.
    Kotera M; Tabei Y; Yamanishi Y; Tokimatsu T; Goto S
    Bioinformatics; 2013 Jul; 29(13):i135-44. PubMed ID: 23812977
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Computational Method for the Identification of Endolysins and Autolysins.
    Xu L; Liang G; Chen B; Tan X; Xiang H; Liao C
    Protein Pept Lett; 2020; 27(4):329-336. PubMed ID: 31577192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational reconstruction of metabolic networks from KEGG.
    Zhou T
    Methods Mol Biol; 2013; 930():235-49. PubMed ID: 23086844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A genome-scale metabolic network alignment method within a hypergraph-based framework using a rotational tensor-vector product.
    Shen T; Zhang Z; Chen Z; Gu D; Liang S; Xu Y; Li R; Wei Y; Liu Z; Yi Y; Xie X
    Sci Rep; 2018 Nov; 8(1):16376. PubMed ID: 30401914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting protein subcellular location with network embedding and enrichment features.
    Pan X; Lu L; Cai YD
    Biochim Biophys Acta Proteins Proteom; 2020 Oct; 1868(10):140477. PubMed ID: 32593761
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manipulating the steady state of metabolic pathways.
    Song B; Büyüktahtakin IE; Ranka S; Kahveci T
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(3):732-47. PubMed ID: 20479507
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Named entity recognition and classification in biomedical text using classifier ensemble.
    Saha S; Ekbal A; Sikdar UK
    Int J Data Min Bioinform; 2015; 11(4):365-91. PubMed ID: 26336665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction of a 26‑feature gene support vector machine classifier for smoking and non‑smoking lung adenocarcinoma sample classification.
    Yang L; Sun L; Wang W; Xu H; Li Y; Zhao JY; Liu DZ; Wang F; Zhang LY
    Mol Med Rep; 2018 Feb; 17(2):3005-3013. PubMed ID: 29257283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MACHINE LEARNING ALGORITHMS FOR IDENTIFICATION OF ABNORMAL GLOW CURVES AND ASSOCIATED ABNORMALITY IN CaSO4:DY-BASED PERSONNEL MONITORING DOSIMETERS.
    Pathan MS; Pradhan SM; Selvam TP
    Radiat Prot Dosimetry; 2020 Sep; 190(3):342-351. PubMed ID: 32857133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.
    Riera-Fernández P; Munteanu CR; Escobar M; Prado-Prado F; Martín-Romalde R; Pereira D; Villalba K; Duardo-Sánchez A; González-Díaz H
    J Theor Biol; 2012 Jan; 293():174-88. PubMed ID: 22037044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ArtPathDesign: rational heterologous pathway design system for the production of nonnative metabolites.
    Chatsurachai S; Furusawa C; Shimizu H
    J Biosci Bioeng; 2013 Oct; 116(4):524-7. PubMed ID: 23664926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases.
    Green ML; Karp PD
    BMC Bioinformatics; 2004 Jun; 5():76. PubMed ID: 15189570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inferring disease and pathway associations of long non-coding RNAs using heterogeneous information network model.
    Sunil Kumar PV; Gopakumar G
    J Bioinform Comput Biol; 2019 Aug; 17(4):1950020. PubMed ID: 31617466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HMMPred: Accurate Prediction of DNA-Binding Proteins Based on HMM Profiles and XGBoost Feature Selection.
    Sang X; Xiao W; Zheng H; Yang Y; Liu T
    Comput Math Methods Med; 2020; 2020():1384749. PubMed ID: 32300371
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implementation and comparison of kernel-based learning methods to predict metabolic networks.
    Roche-Lima A
    Netw Model Anal Health Inform Bioinform; 2016; 5(1):26. PubMed ID: 27471658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying pathways of coordinated gene expression.
    Hancock T; Takigawa I; Mamitsuka H
    Methods Mol Biol; 2013; 939():69-85. PubMed ID: 23192542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct Kernel Perceptron (DKP): ultra-fast kernel ELM-based classification with non-iterative closed-form weight calculation.
    Fernández-Delgado M; Cernadas E; Barro S; Ribeiro J; Neves J
    Neural Netw; 2014 Feb; 50():60-71. PubMed ID: 24287336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.